Bakterid

Allikas: Vikipeedia
Bakterid
Escherichia coli ehk soolekepike, suurendatud 25 000 korda
Escherichia coli ehk soolekepike, suurendatud 25 000 korda
Taksonoomia
Domeen: Bakterid
Hõimkonnad

Actinobacteria (kõrge G+C sisaldusega)
Firmicutes (madala G+C sisaldusega)
Tenericutes (ilma rakukestata)

Aquificae
Deinococcus-Thermus
FibrobacteresChlorobi/Bacteroidetes (FCB grupp ehk Sphingobacteria)
Fusobacteria
Gemmatimonadetes
Nitrospirae
PlanctomycetesVerrucomicrobia/Chlamydiae (PVC grupp ehk Planctobacteria)
Proteobacteria
Spirochaetes
Synergistetes

  • Grupeerimata

Acidobacteria
Chloroflexi
Chrysiogenetes
Cyanobacteria
Deferribacteres
Dictyoglomi
Thermodesulfobacteria
Thermotogae

Bakterid (vanakreeka keelest βακτήριον (baktērion), “kepp, pulk, sau” ) on kõige väiksemad (mikroskoopilised) üherakulised eeltuumsed organismid, kes suudavad iseseisvalt paljuneda ja kasvada.
Bakterid moodustavad fülogeneetiliselt suure prokarüootsete mikroorganismide domeeni. Nad on keskmiselt 1–5 mikromeetri suurused, kuigi olenevalt bakteri liigist võivad rakud olla ka väga erineva suurusega, näiteks bakteril Thiomargarita namibiensis on raku läbimõõt kuni 750 µm. Rakusisesel parasiitsel bakteril Mycoplasma genitaliumil on see 0,2–0,3 µm. Nad on kujult üsna sarnased, tavaliselt kerakujulised või ka pulkjate või spiraalsete vormidega. Bakterid olid ühed esmastest Maal tekkinud eluvormidest.
Oma elupaikade suhtes on nad väga mitmekesised. Baktereid leidub nii pinnases, vees, happelistes kuumavee allikates, radioaktiivsetes jäätmetes[1]. Neid võib leida ka sügavalt Maa koorest, loomade seedekulglatest, taimedest, mehitatud kosmosesõidukitest [2] ja veel paljudest teistest kohtadest.

Ühes grammis mullas leidub tüüpiliselt 40 miljonit bakterirakku ja ühes milliliitris vees keskmiselt miljon bakterit. Kogu Maal on ligikaudselt 5×1030 bakterit[3], ületades oma biomassilt kõiki taimi ja loomi kokku.[4] Bakterid on väga olulised aineringes, näiteks surnud orgaanilise aine lagundajatena ja lämmastiku sidujatena atmosfäärist (mügarbakterid) jm. Bakterid tagavad elu säilimise ka veealuste külma- ja kuumaveeallikate lõõride ümbrust asustavatele bioomidele, muundades sealset vees lahustunud vesiniksulfiidi ja metaani organismidele eluks vajalikeks toite ja energia allikateks. 17 märtsil 2013, teatati avastusest, et maailmamere sügavaim koht, Mariaani süvik, põhimõtteliselt õitseb bakteriaalsest elust..[5][6] Üks teine samalaadne teade on veel näiteks mikroobidest, keda leiti USA looderanniku lähedalt 2,5 km sügavuse ookeaniga kaetud merepõhjast 580 meetrit allpool olevatest kividest.[5][7]

Enamik baktereid on seni veel teadusel kirjeldamata ja ainult umbes pool bakterihõimkonnast omab liike, keda on võimalik kasvatada ka tehistingimustes (laboris).[8]Baktereid uurivat teadusharu nimetatakse bakterioloogiaks, mis on üks mikrobioloogia haru.

Inimesel leidub umbes kümme korda rohkem bakterirakke kui tal on enda keharakke. Paljud nendest bakteritest leiduvad nahal ja seedetraktis.[9] Suurem osa inimesega seotud bakteritest on inimesele kahjutud, teatud bakteritega võitleb immuunsüsteem ja teatud liiki bakterid on ka kasulikud. Kuid paljud bakteriliigid on patogeensed ja põhjustavad selliseid nakkushaigusi nagu koolera, süüfilis, antraks, pidalitõbi ja muhkkatk. Kõige tavalisemad surmaga lõppevad bakteriaalsed haigused on hingamisteede nakkused. Näiteks tuberkuloosi tõttu sureb aastas 2 miljonit inimest, seda küll enamasti Aafrika riikides teiselpool Sahara kõrbe.[10] Arenenud maades kasutatakse bakteriaalsete nakkuste raviks antibiootikume (nii inimestel kui ka koduloomadel). Antibiootikumide kasutamisega seos on tekkinud ka probleem antibiootikumiresistentste tüvede tekkimisega haigustekitajate seas. Tööstuses on bakteritel tähtis roll reovee käitlemisel ja naftareostuse puhastamisel. Toidutööstuses juustude ja jogurtite tootmisel fermentatsiooni protsesside käigus. Samuti kasutatakse baktereid veel kaevandussektoris[11] kulla, pallaadiumi, vase ja muude metallide tootmisel / maagist väljapuhastamisel, samuti leiavad bakterid kasutust veel biotehnoloogias, antibiootikumide ja muude kemikaalide tootmisel.[12] Kuigi algselt hõlmas termin "bakterid" kõiki prokarüoote, muutis 1990. aastatel tehtud avastus bakterite teaduslikku klassifikatsiooni ning prokarüootid, kes on arenenud välja iidsetest ühistest eelastest, jagati 19751978 kahte väga erinevasse organismide rühma, mida kutsutakse arhede domeeniks ja bakterite domeeniks.

Algul peeti neid vaheastmeks rakutuumata pärisbakterite ja rakutuumaga päristuumsete organismide vahel. Hiljem näidati, et nad on eristunud väga varasel evolutsioonietapil, mistõttu fülogeneetilise süstemaatika seisukohalt lahutati bakterid arhedest.[13]

Bakterite evolutsioon[muuda | redigeeri lähteteksti]

Bakterid moodustavad ühe kolmest eluslooduse domeenist (teised kaks on arhed ja eukarüoodid). Praeguste bakterite eelkäijateks on ligikaudu 4 biljonit aastat tagasi tekkinud esmasteks eluvormideks Maal olnud üherakulised mikroorganismid. Umbes 3 biljoni aasta vältel pärast arvatavat elu tekkimise aega on elu Maal olnud mikroorganismide tasemel ning domineerivateks eluvormideks on olnud bakterid ja arhed.[14][15] Kuigi iidseid baktereid on säilinud ka fossiilidena (nt. stromatoliidid), on nad morfoloogiliselt omavahel niivõrd sarnased, et fossiilsete andmete põhjal pole eriti võimalik koostada bakterite evolutsioonikäiku või dateerida mõne teatud bakteriliigi tekkeaega. Siiski on võimalik bakterite fülogeneesi rekonstrueerida geenijärjestuste abil.

Hoolimata nimetusest "arhed" või "ürgid" on arhebakterid pärisbakteritest siiski evolutsiooniliselt nooremad, olles raku koostiselt ja ehituselt sarnasemad eukarüootsete rakkudega, ning välja arenenud varem olemasolevatest bakterite liinidest.
Lisaks bakterite domeeni arhede/eukarüootide domeenist lahkemisele on bakterid seotud ka ühe teise suure evolutsioonilise lahknemisega – eukarüootite domeeni lahknemisega arhedest.
Üsna tõenäoliselt on eukarüootide rakud tekkinud endosümbioosi käigus kui eukarüootsete rakkude eelastesse (kes olid tõenäoliselt arhed[16][17]) sisenesid iidsetest bakteritest endosümbiondid, ning kellest on tekkinud evolutsiooni käigus praeguseaja eukarüootsetes rakkudes leiduvad organellid, näiteks mitokondrid. Lisaks veel, mõned eukarüootsed rakud, kes juba sisaldasid mitokondreid, "neelasid" endasse ka tsüanobakterite taolisi mikroorganisme, mis viis praegusaja vetikate ja maismaataimede rakkudes leiduvate kloroplastide tekkimiseni.

Klassifikatsioon ja määramine[muuda | redigeeri lähteteksti]

Baktereid saab klassifitseerida rakustruktuuride, raku ainevahetuse või raku koostise (DNA, rasvhapped, pigmentid, antigeenid, kinoonid) erinevuste põhjal. Veel saab liigitada baktereid koloonia morfoloogia, kasvukiiruse ja söötmete alusel millel nad kasvada eelistavad. Kuigi selliste tunnuste põhjal saab määrata ja klassifitseerida erinevaid bakteritüvesid, on kindlamateks meetoditeks võrrelda nende DNA/geenijärjestusi, mis pole mõjutatud horisontaalsest geeni ülekandest (rRNA), või määrata ja võrrelda erinevate bakteritüvade guaniini ja tsütosiini sisaldust ning kasutada ka genoomide hübridiseerimist.

Üheks üldlevinud ja esmaseks meetodiks bakterite määratlemisel on ka Grami järgi värvimine. Selle põhjal saab bakterid jagada kahte suurde rühma – Gram-positiivseteks või Gram-negatiivseteks.
Gram-positiivsed bakterid värvuvad kristallvioletiga töötlemisel siniseks. Neil on paks peptidoglükaankiht ja värvi pole neist võimalik välja pesta (etanooli või atsetooniga lühiajaliselt loputades).
Gram-negatiivsetel bakteritel on õhem rakukest ja neist on võimalik värvi välja pesta. Teistkordsel värvimisel safraniiniga värvuvad need bakterid punaseks.
Mõned bakterid võivad pärast Grami järgi värvimist olla ka Gram-varieeruvad – sama bakteriliigi rakud on ühtlasi nii roosad kui ka lillakad. Näiteks perekondade Actinomyces, Arthobacter, Corynebacterium, Mycobacterium ja Propionibacterium rakud on rakkude jagunemise ajal väga õrnad ja võivad kergesti puruneda, mistõttu need Gram-positiivsed bakterid võivad paista Gram-negatiivsetena. Samuti perekondade Bacillus, Butyrivibrio ja Clostridium peptidoglükaanse kihi paksus rakkudes väheneb rakkude vanuse tõustes, mille tulemusena vanemad rakud võivad värvuda Gram-negatiivseteks. Üldiselt on kõikide bakterite puhul nii, et mida vanemad on rakud, seda rohkem võib esineda Gram-varieeruvust.

Hõimkonnad[muuda | redigeeri lähteteksti]

Bakterihõimkonnad ja nende lühiiseloomustused:[18]

  • Eobacteria
    • Chlorobacteria
      • Chloroflexi (rohelised, hõimkonnas pole väävlibaktereid). Väike hõimkond bakterioklorofülli sisadavaid anoksügeenseid fotosünteesijaid, ehk nad ei tooda fotosünteesil hapnikku. Samuti erineb ka nende süsiniku kasutamise viis teistest fotosünteesivatest bakteritest. Nad on tüüpiliselt filamentselt kasvavad fakultatiivsed anaeroobid.
      • Thermomicrobia. Väike hõimkond termofiilseid fotosünteesivaid baktereid.
    • Hadobacteria
      • Deinococcus-Thermus. Väike grupp väga vastupidavaid kemo-organotroofseid ekstremofiile. Mõni liik sellest hõimkonnast talub väga kõrgeid temperatuure, mõni aga madalaid. On ka liike, kes taluvad edukalt kõrget radioaktiivset kiirgust ja erinevaid toksilisi ühendeid.
  • Glycobacteria
    • Cyanobacteria (sinivetikad). Fotosünteesivatest bakteritest kõige olulisem grupp. Nad on klorofülli sisaldavad oksügeensed fotosünteesijad (toodavad hapnikku). Üherakuliselt või filamentsed bakterid.
    • Gracilicutes
      • Spirochaetes. Kujult tavaliselt piklikud ja spiraalsed, kruvijalt liikuvad kemoheterotroofsed bakterid. Paljud liigid imetajatel haigustekitajateks.
      • Chlorobi (rohelised väävlibakterid). On väike hõimkond oblikaatseid anaeroobe ja bakterioklorofülli sisaldavaid fototroofseid baktereid. Nad on ühtlasi ka termofiilsed ja elavad kuumaveeallikates.
      • Bacteroidetes. Suur bakterihõimkond laia ja mitmekesise asurkonnaga. Neid leidub nii pinnases, setetes, merevees kui ka loomade seedekulglates. Heterogeenne grupp, kuhu kuuluvad nii obligaatsed aeroobid kui ka obligaatsed anaeroobid, kommensalistid, parasiidid ja ka vabalt elavad vormid.
      • Fibrobacteres. Väike hõimkond, kuhu kuuluvad paljud kõhus, ruumenis tselluloosi lagundada aitavad bakterid.
      • Proteobacteria (lillad bakterid ja nende sugulased). See on suuruselt teine ja väga mitmekesine bakterihõimkond. Peaaegu kõik neist on heterotroofsed ja paljud ka haigusetekitajad, kuid mitmed taimede juurtes elavad liigid on taimedele ka kasulikud, aidates neil fikseerida lämmastikku. Lillad bakterid sisaldavad bakterioklorofülli.
      • Aquificae. Väike grupp baktereid, kuhu kuulub nii kemolitotroofseid, termofiilseid kui ka hüpertermofiilseid liike. Neid leidub kuumavee allikates, väävlileiukohtades ja hüdrotermilistes piirkondades ookeanis.
      • Deferribacteres. Väike grupp anaaeroobseid vesikeskkonnas elavaid baktereid.
      • Chrysiogenetes Hõimkonda kuulub ainult üks liik kemolitotroofseid baktereid. Nad on unikaalsed sellepoolest, et "hingavad" hapniku asemel hoopis arseeni.
      • Acidobacteria. Väike hõimkond pinnases elavaid happelembeseid ehk atsidofiilseid baktereid. Siia kuuluvad ka bakterirodopsiini sisaldavad fototroofsed bakterid.
      • Planctomycetes. Bakterid, kes elavad mage-, riim- ja merevees. Elutsüklis vahelduvad rakkude sessiilsed (püsipaiksed) ja liikuvad, viburitega vormid. Paljunevad pungumise teel.
      • Chlamydiae. Väike grupp eukarüootide intratsellulaarseid obligaatseid parasiite.
      • Lentisphaerae. Hiljuti, anaaeroobsetest elupaikadest, nii merest kui maismaalt avastatud väike bakterigrupp.
      • Verrucomicrobia. Bakterihõimkond, kelle hulka kuuluvad maismaal ja vees elavad liigid. Mõned liigid leiduvad ka eukarüootsetel peremeesorganismidel.
    • Eurybacteria
      • Fusobacteria. Koosneb ainult ühest perekonnast heterotroofsetest anaeroobsetest bakteritest, kes võivad ka olla haigustekitajateks inimesel. Nad on ühtedeks peamisteks bakteriliikideks seedekulgla mikrobioomis.
      • Thermotogae. Hõimkond, kuhu kuuluvad hüpertermofiilsed, obligaatsed anaeroobid ja heterotroofsed fermenteerijad bakterid.
  • Posibacteria
    • Endobacteria
      • Dictyoglomi. Hõimkonnas ainult üks liik hüpertermofiilseid, kemo-organotroofseid ja aeroobseid baktereid.
      • Firmicutes. On kõige suurem bakterigrupp, kuhu kuuluvad Gram-positiivsed madala GC sisaldusega bakterid. Neid leidub väga mitmekesistes kohtades ja mõned neist on ka patogeensed. Üks perekond, Heliobacteria, saab oma energia fotosünteesilt.
    • Actinobacteria. Suur bakterihõimkond, kuhu kuuluvad Gram-positiivsed kõrge GC sisaldusega bakterid. On pinnases tavalised, samuti leidub neid taimedes ja loomades. Mõned on ka patogeensed.

Vanim elusolend[muuda | redigeeri lähteteksti]

Varem on peetud vanimaks elusolendiks 25–40 miljoni aasta vanust bakterit, kes leiti merevaigus olnud mesilasest.
Kuid on avastatud veelgi vanem, nimelt 250 miljoni aastane bakter, kes leiti soolakristallidest, mis pärinevad 610 meetri sügavuselt New Mexico soolakaevandusest.

Rühmal teadlastel õnnestus kasvatada baktereid spooridest, mis eraldati 250 miljoni aasta vanusest soolakristallist. Senitundmatu liik (praegu kasutatakse selle tähistamiseks numbrikombinatsiooni 2-9-3) kuulub ilmselt perekonda Bacillus ja teda peetakse vanimaks teadaolevaks organismiks.

Osa teadlasi väidab, et see bakter pole tegelikult nii vana.

Kasvukeskkond[muuda | redigeeri lähteteksti]

Bakterid erinevad üksteisest eeskätt elukeskkonna, samuti oma väliskuju poolest.

Baktereid elab mullas, vees ja õhus, kõikides elusloomades ja taimedes ning surnud organismide jäänustes. 1 gramm mulda sisaldab kuni miljard bakterit, ühes piimatilgas võib neid olla sadu tuhandeid.

Baktereid leidub kõikjal, nad on biokeemiliselt väga aktiivsed ja täidavad looduse aineringes ülitähtsat osa. Loomade seedekulglas võtavad bakterid osa seedimisest, peremeesorganism tarvitab mõningaid bakterite elutegevuses tekkinud vitamiine. Taimede juurtel elavad bakterid aitavad taimedel toituda.

Bakterite elutegevust mõjutavad temperatuur, soolsus, pH, kiirgus ja muud tegurid. Enamik baktereid eelistab mõõdukat temperatuuri ja soolasust ning neutraalset pH-d. Kiirgus mõjub paljunemisele negatiivselt. Ekstremofiilid on bakterid, kes taluvad hästi äärmuslikke keskkonnatingimusi, nad kuuluvad enamasti arhede hulka.

Bakteri mikrokeskkond on organismi lähiümbrus. Bakteritele meeldib kasvada kinnitatuna tahkele pinnale, sest sinna absorbeeruvad toitained ja see soodustab bakterite kasvamist. Seal moodustub biokile: õhuke kiht, mis koosneb bakteritest. Bakterite kleepumisel tahkele pinnale osalevad piilid ja kapsel, näiteks hambakatt.

Bakterid on erakordselt vastupidavad. Nad võivad elutseda praktiliselt igasuguses keskkonnas, alates kuumaveeallikatest kuni arktilise pakaseni.

Paljud bakterid võivad moodustada spoore. Need on tillukesed kapslid, milles bakter võib eluvõime säilitada aastate kestel, taludes hästi nii kuivamist, suurt kuumust kui ka desinfektsioonivahendeid.

Vaid vähesed tõvestavatest bakteritest moodustavad spoore.

Suurus, kuju ja ehitus[muuda | redigeeri lähteteksti]

Bacteria shape.png


A. batsill (bacillus) – pulkjad, ka niitjad
B. kokk (coccus) – kerakujulised
C. kerakujulised – parv
D. kerakujulised – paaris
E. spirill (spirillum) – nõrgalt keerdunud
F. vibrioon (vibrio) – komajad

  • Vibrioonid, spirillid ja spiroheedid kokku on kruvibakterid
  • spiroheet (spirochaetum) – tugevalt keerdunud (keeritsbakterid)

Bakterid on eeltuumsed (prokarüootsed) organismid, sest neil puudub rakutuum.

Bakterid on värvusetud, sinised või punakad, erineva kujuga, üksikud või ahelatena.

Bakterite keskmine pikkus on mõni mikromeeter (erandlikult kuni 100 μm = 0,1 mm). Bakterirakk on ehituselt lihtsam eukarüootsest rakust, ega sisalda viimasele omaseid membraanseid organelle.

Kuigi bakterirakud on keerukama ehitusega kui viirused, on nad siiski väga lihtsad. Nende ehitus on kindlaks tehtud enam kui tuhandekordse suurendusega optiliste mikroskoopide ja saja tuhande kordse suurendusega elektronmikroskoopide abil. Kõiki bakterirakke ümbritseb tihe rakukest, mistõttu toit saab rakku siseneda ainult lahustunud kujul. Rakukesta ehituse järgi jaotatakse bakterid spetsiaalse värvimise alusel grammnegatiivseteks ja grammpositiivseteks. Grammnegatiivsete bakterite ehitus on keerukam kui grammpositiivsetel.

Mõnedel bakteritel ümbritseb rakukesta kaitsev limakest ehk kapsel. Sageli on neil üks või mitu viburit, mida kasutatakse kulgemiseks. Bakterid liiguvad viburite, lima või looklemise abil.

Rakud sisaldavad DNA spiraali (nukleoid) ja teisi keemilisi aineid, kuid taime- ja loomarakkudele iseloomulikku eraldunud tuuma ning muid keerukaid organoide pole siin leitud.

DNA paikneb bakteritel kromosoomis ja plasmiidides. Bakterite ribosoomid erinevad nii suuruselt kui koostiselt eukarüootide omadest. Mõned bakterid moodustavad ebasoodsate tingimuste üleelamiseks endospoore.

Bakterite liikumine ja viburid[muuda | redigeeri lähteteksti]

Paljudel bakteritel on üks, kaks või rohkem vibureid. Tavaliselt puuduvad viburid patogeensetel bakteritel.

Bakterite viburite läbimõõt on 20–30 nanomeetrit, pikkus keskmiselt 10 mikromeetrit. Viburid koosnevad erilisest valgust – flagelliinist. Bakteri viburite arv ja paiknemine on väga erinev: eristatakse monotrihhe, monopolaarseid polütrihhe, bipolaarseid polütrihhe ja peritrihhe.

Bakterid võivad liikuda nii viburitega vedelas, tahkel pinnal (voogamine ehk swarming), lima abil, liikumine vees üles-alla (gaasivakuloolide abil) või looklemisega. Ehkki üldjuhul on bakterite piilide ülesandeks adhesioon, saavad nad tüüp IV piilide abil liikuda – seda nimetatakse ka twitchingiks.

Paljunemine[muuda | redigeeri lähteteksti]

Bakteriraku pooldumine. Esmalt kordistub kromosoom, seejärel pooldub rakk.

Bakterid paljunevad põhiliselt pooldumisega, esineb aga teisigi mooduseid.

Sobiva temperatuuri juures, milleks on enamasti umbes 37° C, võib pooldumine toimuda iga 20 minuti järel. Teoreetiliselt võib ühest bakterist 24 tunni jooksul tekkida ligikaudu 140 000 000 000 000 bakterit (140 triljonit). Tegelikkuses seda juhtuda ei saa, sest õige pea lõpeksid toiduvarud ja koguneksid mürgised jääkained, nii et aja möödudes bakterite paljunemine pidurdub.

Kuigi enamik baktereid paljuneb pooldumise teel, on mõnel liigil täheldatud ka omapärast sugulist paljunemist, kusjuures ühe bakteriraku sisu voolab teise rakku. Mitmed tsüanobakterid paljunevad hormogoonide abil, mõnel tsüanobakteril on täheldatud ka paljunemisrakkude ehk goniidide abil paljunemist, kusjuures alati on neil säilinud ka paljunemine hormogoonide abil.

Mõnel bakterirühmal (nt Hyphomicrobium) esineb pungumine. Kuni 1999, mil leiti Thiomargarita namibiensis, maailma suurimaks bakteriks peetud Epulopiscium fishelsonil arenevad tütarrakud emasorganismi sees ja hiljem väljuvad emabakteri piludest. Põhimõtteliselt on tegu sünnitajabakteriga.

Toitumine ja ainevahetustüübid[muuda | redigeeri lähteteksti]

Bakterid koosnevad 75–85% ulatuses veest ning samadest süsivesikutest, lipiididest, amino- ja nukleiinhapetest nagu kõik eukarüoodidki. Kõigis elusolendites toimuvad põhimõtteliselt sarnased biokeemilised ainevahetusereaktsioonid (metabolism).

Toitumine on bakteritel mitmekesisem kui eukarüootidel. Energiaallikatena kasutavad bakterid valgusenergiat ja keemilist energiat.

Bakterid omastavad väliskeskkonnast vees lahustunud toitaineid kogu raku pinnaga (osmoosselt) ja eritavad rakust välja ainevahetuse jääkprodukte. Bakterid vajavad toitaineid ka selleks, et hankida biosünteesireaktsioonideks vajaminevat energiat. Täiendavalt kulutab bakter energiat ka liikumiseks ja ainete rakku transportimiseks. Energia salvestatakse rakus ATP-na.

Bakterite toitumistüüpe iseloomustatakse põhiliselt selle järgi, mida nad kasutavad energia- ja süsinikuallikana. Energiaallikaks ATP-sünteesil võib olla päikeseenergia ehk valgusenergia või keemiline energia. Süsinikuallikaks võivad olla kas mitmesugused orgaanilised ained või CO2. Samuti on toitumistüüpide jaoks oluline energiat edasikandva elektroni päritolu: see saadakse kas anorgaanilisest ainest (nt veest) või orgaanilisest ainest.

Süsinikuallikas[muuda | redigeeri lähteteksti]

Vastavalt süsinikuallikale (metaboolsete protsesside järgi) jagatakse bakterid heterotroofideks ja autotroofideks.

Heterotroofide süsiniku allikaks on orgaanilised ühendid. Sealjuures heterotroofsetest bakteritest enamik saab energiat orgaaniliste ühendite (oksüdatsioonist) (neid nimetatakse siis kemoheterotroofideks). Kemoheterotroofid kasvavad hästi näiteks aminohappeid ja suhkruid sisaldavatel söötmetel. Samuti suudavad nad lagundada naftat, taimekaitsevahendeid ja tselluloosi. Enamik baktereid on heterotroofid.

Autotroofide süsiniku allikas on süsihappegaas (CO2). Autotroofideks on bakterite hulgas näiteks tsüanobakterid.

2007. aastal avastasid Uus-Meremaa teadlased uue bakterite liigi, kelle toiduks on metaan. Nad elutsevad maapinnas 30 cm sügavusel, kus temperatuur on üle 60 °C, koht asub geotermaalse piirkonna Hells Gates'i lähedal Rotorua asulas. Bakterite ladinakeelne nimi on Methylokorus infernorum. [19]

Kasutatav energiaallikas[muuda | redigeeri lähteteksti]

Välise energiaallika järgi jaotatakse bakterid fototroofideks ja kemotroofideks.

Fototroofid kasutavad valgusenergiat (päikeseenergiat).

Kemotroofid saavad energiat keemilise substraadi oksüdeerimisel.

Huvitav rühm bakterimaailmas on autotroofsed kemosünteesijad bakterid ehk kemolitotroofid. Nad saavad energiat anorgaaniliste ühendite oksüdatsioonist ja kasutavad süsinikuallikana süsihappegaasi (väävlibakterid, vesinikubakterid, rauabakterid).

Väävlibakterid elavad kuumaveeallikates, mudas ja seisvates veekogudes ning toituvad vees leiduvast väävlist. Väävlibakteritele iseloomulik mädamunalõhn tuleneb nende poolt toodetavast väävelvesinikust.

Põllumajanduses on suur tähtsus lämmastikku siduvatel bakteritel, eriti neil, kes muudavad õhulämmastiku nitraatideks. Mõni sellistest bakteritest, näiteks Rhizobium, elutseb herne ja ristiku juurtes.

Kasutatav elektronidoonor[muuda | redigeeri lähteteksti]

Raku energeetilises metabolismis kasutatava elektroni päritolu järgi jaotatakse bakterid litotroofideks ja organotroofideks.

Litotroofid kasutavad elektroni andjana anorgaanilisi ühendeid.

Organotroofid kasutavad elektroni andjana orgaanilisi ühendeid.

Orgaanilisest ainest toitumine[muuda | redigeeri lähteteksti]

Prokarüoodid jaotatakse aeroobideks ja anaeroobideks. Obligatoorsed aeroobid kasutavad hapnikku rakuhingamisel ega saa hapnikuta elada. Fakultatiivsed anaeroobid kasutavad hapniku olemasolul seda rakuhingamisel.

Kui keskkonnas puudub hapnik, toimub käärimine. Obligatoorsetele anaeroobidele on hapnik mürk. Mõned obligatoorsed anaeroobid on kääritajad, teised liigid saavad energiat anaeroobse hingamisega, mille korral on elektronide lõppaktseptoriks hingamisel hapniku asemel mõni muu anorgaaniline molekul.

Aeroobid valmistavad orgaanilist ainet ehk bakterid sünteesivad vajalikke toitaineid ise, kasutades selleks klorofülli, nagu seda teevad ka rohelised taimed.

Anaeroobid toituvad valmis orgaanilisest ainest.

Elukeskkond[muuda | redigeeri lähteteksti]

Osa baktereid elab parasiitidena taimedes ja loomades, põhjustades mitmesuguseid haigusi. Neid nimetatakse patogeenseteks ehk tõvestavateks bakteriteks.

Paljud bakterid elavad saprobiontidena, mis tähendab seda, et nad toituvad surnud orgaanilisest ainest.

Bakterid täidavad kõigi elusolendite seisukohalt elulise tähtsusega ülesannet: nad teevad võimalikuks hapniku, süsinikdioksiidi ja lämmastikuühendite varude korduva kasutamise. Kui bakterid ei põhjustaks surnud organismide kõdunemist, ei jätkuks mullas taimedele enam õige varsti toitu, ilma taimedeta aga ei saaks elada loomad.

Normaalne mikrofloora[muuda | redigeeri lähteteksti]

Nii taimede, loomade kui ka inimestega elab alati koos palju erinevaid baktereid, mis moodustavad nimetatud organismide normaalse mikrofloora ehk mikrobiotsönoosi ehk mikrobioota.

Et organismid on avatud süsteemid, satub neisse pidevalt uusi mikroobe, kuid nad kõik ei jää püsima. Vastavalt juurdumisele eristatakse

  • organismi residentmikrofloorat ehk indigeenset ehk sümbiontset floorat (siia kuuluvad kõik mikroobid, mis on keskkonnas juurdunud) ja
  • transiit- ehk passaažmikrofloora (siia kuuluvad mikroobid, mis jäävad keskkonda lühikeseks ajaks, seejärel kas hukkuvad või tõrjutakse organismist välja).

Inimestega koos elavaid baktereid on kõige enam jämesooles, kuid neid leidub ka mujal. Normaalne mikrofloora on enamasti kahjutu ja selle koostis sõltub paljudest faktoritest. Normaalne mikrofloora kaitseb organismi haigusetekitajate eest, takistades organismile kahjulike bakterite kinnitumist kudedele, stimuleerides antikehade teket.

Patogeensed bakterid ja toksiinid[muuda | redigeeri lähteteksti]

Bakterid, mis inimese organismi tungides põhjustavad haigusi, nimetatakse patogeenseteks. Enamik neist moodustavad mürkaineid ehk toksiine, mis kutsuvad esile koekahjustusi. Toksiinid on reeglina valgulised.

Selleks, et oleks lihtsam haigestumist vältida, peab teadma, kuidas haigusetekitajad bakterid levivad.

Haigused ja vaktsiinid[muuda | redigeeri lähteteksti]

Bakteriaalsed haigused on enamasti nakkushaigused. Mikroobide põhimassi moodustavad saprofüüdid ehk roisklased, mis etendavad meie elus väga tähtsat osa (käärimisprotsessid, lämmastiku ringkäik looduses, roiskumisprotsessid jne.). Nakkushaiguse väljakujunemiseks peab haigusetekitaja sattuma vastuvõtlikku organismi. Selle teed on erinevad, näiteks soolenakkuste korral suu kaudu.

Alati ei põhjusta haigusetekitaja sattumine organismi haigestumist. Haigestumiseks on vaja hulka haigustekitajaid. Organismis puhkeb võitlus haigustekitajaga. Kui võidab organism, siis haigestumist ei järgne, kui võidab aga haigustekitaja, on tagajärjeks kindla kliinilise kuluga haigestumine, ent võitlus tekitajaga käib ka haiguse vältel.

Bakteriaalsed haigused on näiteks iseeneslik abort, klamüüdia, klamüdidoos, gonorröa, toksoplasmoos, teetanus, salmonelloos, botulism, kõhutüüfus, tüüfus, difteeria, düsenteeria, koolera, kopsutuberkuloos, tuberkuloos, leepra ehk pidalitõbi, bakteriaalne toidumürgitus, läkaköha, leginelloos, listerioos, meningiit, katk (muhk-, kopsu-, nahakatk jms) või bioloogilise relvana kasutust leidnud siberi katk. Ohtlikeks patogeenideks on veel leegionäride haigust põhjustav bakter (Legionella pneumophila) ja lihasööjabakter (Streptococcus pyogenes).

Erinevalt viirushaigustest saab bakterihaigusi ravida antibiootikumidega, abi on ka vaktsineerimisest.

Antibiootikume on suur hulk. Erinevad antibiootikumid on suunatud põhiliselt bakteri rakus toimuvate valgusünteesi komponentide pärssimisele, aga on ka teistsuguse toimemehhanismiga antibiootikume, mõned neist blokeerivad bakterite genoomi replikatsiooni jm.

Bakterid eritavad ka ise antibiootikume, mida saab kasutada vaktsiinidena bakterhaiguste puhul.

Bakterite poolt toodetud mürgised jääkained, mida sisaldavad riknenud toiduained, võivad põhjustada seedehäireid.

Toit, vajalikkus inimesele[muuda | redigeeri lähteteksti]

Inimene kasutas baktereid või ja juustu valmistamisel juba ammu enne seda, kui ta midagi teadis selliste organismide olemasolust. Bakterite abil toodetakse enamik piimasaadusi, näiteks hapupiim, keefir ja jogurt, samuti alkoholi, antibiootikume, veiniäädikat ja muid orgaanilisi ühendeid.

Ka roiskumine, sealhulgas toiduainete riknemine, on bakterite tegevuse tagajärg.

Inimene kasutab baktereid veel naha parkimisel, linaleotamisel ja reovete puhastamisel. Bakterid aitavad jõgedel ja järvedel puhtaina säilida.

Piima pastöriseerimisel kuumutatakse seda temperatuurini, mis on piisav kõikide bakterirakkude hävitamiseks, ellu jäävad ainult spoorid. Et piimas leiduvad tõvestavad pisikud spoore ei moodusta, on pastöriseeritud piima joomine ohutu. Küll aga võivad ellujäänud spooridest kasvavad kahjutud bakterid piima hapendada.

Baktereid kasutatakse

Pärisbakterid[muuda | redigeeri lähteteksti]

Litotroofsed bakterid[muuda | redigeeri lähteteksti]

Fotosünteesivad bakterid[muuda | redigeeri lähteteksti]

Vaata ka[muuda | redigeeri lähteteksti]

Viited[muuda | redigeeri lähteteksti]

  1. Fredrickson JK (2004). "Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state". Applied and Environmental Microbiology 70 (7): 4230–41. doi:10.1128/AEM.70.7.4230-4241.2004. PMID 15240306. 
  2. http://science.nasa.gov/science-news/science-at-nasa/2007/11may_locad3/
  3. Whitman WB, Coleman DC, Wiebe WJ (1998). "Prokaryotes: the unseen majority". Proceedings of the National Academy of Sciences of the United States of America 95 (12): 6578–83. doi:10.1073/pnas.95.12.6578. PMID 9618454. Bibcode1998PNAS...95.6578W. 
  4. C.Michael Hogan. 2010. Bacteria. Encyclopedia of Earth. eds. Sidney Draggan and C.J.Cleveland, National Council for Science and the Environment, Washington DC
  5. 5,0 5,1 Choi, Charles Q. (17 March 2013). "Microbes Thrive in Deepest Spot on Earth". LiveScience. Vaadatud 17 March 2013.
  6. (17 March 2013) "High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth". Nature Geoscience. doi:10.1038/ngeo1773. Bibcode2013NatGe...6..284G. Välja otsitud 17 March 2013. 
  7. Oskin, Becky (14 March 2013). "Intraterrestrials: Life Thrives in Ocean Floor". LiveScience. Vaadatud 17 March 2013.
  8. Rappé MS, Giovannoni SJ (2003). "The uncultured microbial majority". Annual Review of Microbiology 57: 369–94. doi:10.1146/annurev.micro.57.030502.090759. PMID 14527284. 
  9. Sears CL (2005). "A dynamic partnership: celebrating our gut flora". Anaerobe 11 (5): 247–51. doi:10.1016/j.anaerobe.2005.05.001. PMID 16701579. 
  10. "2002 WHO mortality data". Vaadatud 20.01.2007.
  11. "Metal-Mining Bacteria Are Green Chemists" (September 2, 2010). 
  12. Ishige T, Honda K, Shimizu S (2005). "Whole organism biocatalysis". Current Opinion in Chemical Biology 9 (2): 174–80. doi:10.1016/j.cbpa.2005.02.001. PMID 15811802. 
  13. Woese CR, Kandler O, Wheelis ML (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America 87 (12): 4576–9. doi:10.1073/pnas.87.12.4576. PMID 2112744. Bibcode1990PNAS...87.4576W. 
  14. Schopf J (1994). "Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic". Proc Natl Acad Sci USA 91 (15): 6735–42. doi:10.1073/pnas.91.15.6735. PMID 8041691. Bibcode1994PNAS...91.6735S. 
  15. DeLong E, Pace N (2001). "Environmental diversity of bacteria and archaea". Syst Biol 50 (4): 470–8. doi:10.1080/106351501750435040. PMID 12116647. 
  16. Poole A, Penny D (2007). "Evaluating hypotheses for the origin of eukaryotes". BioEssays 29 (1): 74–84. doi:10.1002/bies.20516. PMID 17187354. 
  17. Dyall S, Brown M, Johnson P (2004). "Ancient invasions: from endosymbionts to organelles". Science 304 (5668): 253–7. doi:10.1126/science.1094884. PMID 15073369. Bibcode2004Sci...304..253D. 
  18. Cavalier-Smith, T. (2006) Rooting the tree of life by transition analyzes ,
    Biol Direct
    , 1: 19. doi: 10.1186/1745-6150-1-19.
  19. Methane-eating bacteria could halt warming. (inglise keel)

Välislingid[muuda | redigeeri lähteteksti]