Alumiinium

Allikas: Vikipeedia
Alumiinium
Üldised omadused
Keemiline valem Al
Välimus Hõbehall, tahkis
Füüsikalised omadused
Molekuli mass 26,98 amü
Sulamistemperatuur 933,15 K (660 °C)
Keemistemperatuur 2792,15 K (2519 °C)
Tihedus 2700 kg/m³
Kasutatakse SI-süsteemi ühikuid. Kui pole teisiti öeldud, eeldatakse normaaltingimusi.
13




3
8
2
Al
26,9815
Alumiinium

Alumiinium on keemiline element järjenumbriga 13. Alumiinium on hõbevalge, pehme, plastne metall.

Alumiinium on kolmas kõige levinum element hapniku ja räni järel ning kõige levinum metall maakoores (8,3% massist).

Alumiinium on keemiliselt nii aktiivne, et puhtal kujul teda looduses ei leidu. Alumiiniumi leidub umbes 270 mineraalis.[1] Alumiiniumi peamine maak on boksiit.

Alumiiniumil on üks stabiilne looduslik isotoop massiarvuga 27. Radioaktiivne isotoop massiarvuga 26 tekib looduses kosmiliste kiirte mõjul.

Alumiiniumil on metalli kohta märkimisväärt väike tihedus ja hea vastupidavus korrosioonile. Alumiinium ja selle sulamid on olulised lennunduses ja muis transpordisektoreis. Kõige kasulikumad alumiiniumiühendid on oksiidid ja sulfaadid.

Vaatamata alumiiniumi laiale levikule looduses ei ole teada ühtegi eluvormi, kes tarbiks alumiiniumi soolasid. Alumiiniumühendite bioloogiline kasulikkus on laia leviku tõttu siiani teadlaste huviobjekt.[2]

Omadused[muuda | muuda lähteteksti]

Füüsikalised[muuda | muuda lähteteksti]

Alumiinium on võrdlemisi pehme, vastupidav, kerge, plastne ja hästi sepistatav metall. Alumiiniumi värvus oleneb pinna karedusest ning võib olla hõbedasest matja hallini. Alumiinium ei ole magnetiline ja süttib raskelt.

Puhas alumiinium peegeldab üsna hästi nähtavat valgust ning ülihästi infrapunakiirgust .

Puhta alumiiniumi voolavuspiir on 7–11 MPa; sulamitel on see 200–600 MPa.[1] Alumiiniumi tihedus ja jäikus on umbes 1/3 terase omast. Alumiinium on kergesti pressitav, valatav ja freesitav.

Alumiinium on väga hea soojus- ja elektrijuht. Alumiiniumil on 59% vase soojus- ja elektrijuhtivusvõimest kolm korda väiksema tiheduse juures. Alumiinium on suuteline olema ülijuht.[3]

Keemilised[muuda | muuda lähteteksti]

Alumiinium peab korrosioonile hästi vastu, kuna oksüdeerumisel tekib õhuke pindmine alumiiniumoksiidi kiht, mis takistab edasist oksüdeerumist. Suure tugevusega alumiiniumi sulamid on korrosioonile vastuvõtlikumad.

Korrosioonikaitse tõttu on alumiinium üks väheseid metalle, mis säilitab pulbrina oma hõbedase läike, seetõttu on alumiinium oluline komponent hõbedastes värvides.

Alumiiniumi reageerimisel veega on võimalik toota vesinikku.[4]

2 Al + 3 H2O → Al2O3 + 3 H2

Isotoobid[muuda | muuda lähteteksti]

Alumiiniumil on mitmeid isotoope, mille massiarvud on vahemikus 21–42. Ainult Al27 (stabiilne) ning Al26 (radioaktiivne) esinevad looduslikult. Looduses leiduva alumiiniumi puhul on 99,9% juhtudest tegemist Al27 isotoobiga. Alumiiniumi isotoope kasutatakse näiteks ookeanisetete, meteoriitide ja jääliustike dateerimisel.

Levik looduses[muuda | muuda lähteteksti]

Stabiilne alumiinium tekib vesiniku liitumisel magneesiumiga suurel kiirusel suurtes tähtedes või supernoovades.[5]

Alumiinium on kolmas kõige levinum element (hapniku ja räni järel) ja kõige levinum metalne element maakoores (8,3% massist),[6] kuid ta ei esine peaaegu mitte kunagi puhta elemendina, vaid enamasti oksiidi või silikaadina.

Lisaks leidub alumiiniumi berüllis, krüoliidis, granaadis ja türkiisis. Kroomi- või raualisanditega Al2O3 saagiseks on vastavalt vääriskivid rubiin ja safiir.

Kuigi alumiinium on väga tavaline ja laialt levinud element, ei ole tavalised alumiiniumi mineraalid eriti otstarbekad allikad.

Kogu alumiinium toodetakse boksiidi (AlOx(OH)3–2x) maagist. Boksiit tekib troopilises kliimas madala raua- ja ränisisaldusega aluspõhja kivimite murenemise tulemusena.[7] Suurimad boksiidi lademed esinevad Austraalias, Brasiilias, Guineas ja Jamaical ning põhilised kaevandusalad asuvad Austraalias, Brasiilias, Hiinas, Indias, Guineas, Indoneesias, Jamaical, Venemaal ja Surinames.

Kasutus[muuda | muuda lähteteksti]

Alumiinium on maailmas enim kasutatud mitte-raudmetall.[8] 2005. aastal oli alumiiniumi kogutoodang 31,9 miljonit tonni. See ületab kõikide metallide toodangu peale raua, mida toodeti 837,5 miljonit tonni.[9] Prognoos 2012. aastaks oli 42–45 miljonit tonni, sest Hiina toodang oli tõusuteel.[10]

Alumiiniumit kasutatakse peaaegu alati sulamina, kuna see parandab tunduvalt mehaanilisi omadusi. Näiteks enamik fooliumist ja alumiiniumtaarast on toodetud 92–99% alumiiniumisisaldusega sulamist.[11] Põhilised sulami komponendid on vask, tsink, magneesium, mangaan ja räni.[12]

Mõned paljudest alumiiniumi kasutusvaldkondadest:[muuda | muuda lähteteksti]

Alumiiniumfoolium

Puhta metallina kasutatakse alumiiniumit vaid siis, kui vastupidavus korrosioonile ja töödeldavus on tähtsam kui tugevus või kõvadus.

Alumiinium ehitusmaterjalina[muuda | muuda lähteteksti]

Alumiiniumi läbimurre arhitektuuris toimus aastatel 1930–1932, kui Empire State Buildingu ehitamisel võeti kasutusele suures mahus alumiiniumist valmistatud ehitusdetaile. Alumiinium võimaldab ehitada ajale vastupidavaid, tugevaid ning kergesti hooldatavaid uksi, aknaid, fassaade ja katuseid. Tänapäeval on alumiinium üks energiatõhusamaid ja jätkusuutlikumaid ehitusmaterjale. Seda loetakse jätkusuutlikuks ehitusmaterjaliks, kuna taaskasutamisel ei kaota materjal oma kvaliteeti ning tarbib vaid 5% energiast, mida on tarvis maagist alumiiniumi valmistamiseks. Üle poole alumiiniumist valmistatud toodete materjalist on ümbertöötatud alumiinium.[17] Levinumad alumiiniumi pinnatöötlused on anodeerimine ja värvimine.

Anodeerimine[muuda | muuda lähteteksti]

Anodeerimine on elektrokeemiline protsess, mille käigus moodustub alumiiniumi pinnale oksiidikiht. Tekkinud kiht muudab materjali korrosiooni- ja kulumiskindlamaks ning vastupidavamaks keskkonnatingimustele.[18]

Anodeerimise plussid: vastupidavus, värvi püsivus, lihtne hooldatavus, metalliline välimus, kulutõhusus, ohutu ja tervist mitte kahjustav, keskkonda mitte kahjustav. Anodeerimise miinused: vähene värvivalik, ühtlase väljanägemise saavutamine on keeruline, vigade peitmine/varjamine on väga raske.[19]

Ühendid[muuda | muuda lähteteksti]

Sulfaadid[muuda | muuda lähteteksti]

Alumiiniumsulfaati (Al2(SO4)3(H2O)18) toodetakse igal aastal miljardeid kilogramme. Umbes pool toodangust kasutatakse ära veepuhastuses. Veel kasutatakse alumiiniumsulfaati paberi tootmiseks, toidulisandites, tulekindlustoodetes ja naha parkimiseks.

Oksiidid[muuda | muuda lähteteksti]

Enamik alumiiniumoksiidi toodangust kasutatakse alumiiniumi töötlemiseks. Samuti kasutatakse alumiiniumoksiidi katalüsaatorina.

Kloriidid[muuda | muuda lähteteksti]

Alumiiniumkloriidi (AlCl3) kasutatakse nafta rafineerimiseks ning sünteetilise kummi ja polümeeride tootmiseks.

Sulamid[muuda | muuda lähteteksti]

Alumiiniumi sulameid kasutatakse palju konstruktsioonides.

Alumiiniumi sulamite tugevus ja vastupidavus varieerub. Erinevused ei tulene ainult koostisest, vaid ka tootmisprotsessist ja töötlemistemperatuurist. Teadmatusest valesti disainitud konstruktsioonid on loonud alumiiniumile halva maine.[viide?]

Põhiline alumiiniumisulami puudus on tugevuse väsimine. Seetõttu määratakse alumiiniumkonstruktsioonidele eluiga, erinevalt näiteks terasest, mis võib olla igavene.

Teine alumiiniumi puudus on soojustundlikkus. Erinevalt terasest hakkab alumiinium sulama enne hõõgumist, seetõttu ei ole visuaalseid märke metalli jõudmisest sulamislähedasele temperatuurile. Nagu teistel metallidel, tekivad ka alumiiniumil kuumutamise tagajärjel sisemised pinged. Kuna alumiiniumi sulamispunkt on väga väike, muudab see alumiiniumi töötlemise ja keevitamise raskeks.

Mõned alumiiniumisulamid[muuda | muuda lähteteksti]

  • AlSi (silumiin) – räni 10–13%, lihtsate detailide valmistamiseks
  • AlSiCu – vastutusrikaste valandite valmistamiseks (plokk)
  • AlMg – kõrge korrosioonikindlus ja head mehaanilised omadused, halvem valatavus
  • AlCu – hea valatavus, madalam korrosioonikindlus
  • AlMg, AlMn, AlSi – kasutatakse ilma termotöötluseta, plastsed, korrosioonikindlad
  • AlCuMg – duralumiinium; kasutusel alates 1907. aastast
  • AlZnMgCu – kõrgtugev alumiiniumi sulam (vanandatav)

Tootmine[muuda | muuda lähteteksti]

Tänapäeval toodetakse alumiiniumi Halli-Héroult' meetodil.

Alumiiniumi tootmine

Alumiiniumi elektrolüüsimine nõuab väga palju energiat. Keskmine energiatarve 1 kg alumiiniumi tootmiseks on 15 kilovatt-tundi. Halli-Héroult' meetodil on võimalik toota 99% sisaldusega alumiiniumi. Edasi saab alumiiniumi puhastada Hoope protsessi käigus, kus elektrolüüsitakse sulanud alumiiniumi naatriumi, baariumi ja fluoriidi elektrolüütidega. Tulemuseks on 99,99% puhas alumiinium.[20][21]

20–40% alumiiniumi hinnast moodustab elektri hind.

Ajalugu[muuda | muuda lähteteksti]

Esimest korda tootis puhastamata vormis alumiiniumi Taani füüsik ja keemik Hans Christian Ørsted 1825. aastal. Ta pani reageerima veevaba alumiiniumkloriidi ja kaaliumi sulami ning sai tulemuseks tina meenutava metallitüki.[22] Friedrich Wöhler viis läbi sama katse, kuid tõestas, et tulemuseks oli puhas kaalium. 1827. aastal viis Wöhler läbi sarnase katse, milles segas veevaba alumiiniumkloriidi kaaliumiga ja sai alumiiniumi.[23] Hiljem avastas Pierre Berthier alumiiniumboksiidi.[24]

Vaata ka[muuda | muuda lähteteksti]

Kirjandus[muuda | muuda lähteteksti]

  1. 1,0 1,1 Polmear, I. J. (1995). Light Alloys: Metallurgy of the Light Metals (3rd ed.). Butterworth-Heinemann. ISBN 978-0-340-63207-9.
  2. Helmboldt, O. (2007). "Aluminum Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a01_527.pub2.
  3. Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review 111 (1): 132–142.
  4. "Reaction of Aluminum with Water to Produce Hydrogen". U.S. Department of Energy. 1. jaanuar, 2008.
  5. Cameron, A. G. W. (1957). Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis (2nd ed.). Atomic Energy of Canada.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. p. 217. ISBN 0080379419.
  7. Guilbert, J. F. and Park, C. F. (1986). The Geology of Ore Deposits. W. H. Freeman. pp. 774–795. ISBN 0-7167-1456-6.
  8. "Aluminum". Encyclopædia Britannica. Retrieved 2012-03-06.
  9. Hetherington, L. E. (2007). World Mineral Production: 2001–2005. British Geological Survey. ISBN 978-0-85272-592-4.
  10. "Rising Chinese Costs to Support Aluminum Prices". Bloomberg News. 23 November 2009.
  11. Millberg, L. S. "Aluminum Foil". How Products are Made, Volume 1. Archived from the original on 13 July 2007. Retrieved 2007-08-11. ]
  12. Lyle, J. P.; Granger, D. A.; Sanders, R. E. (2005). "Aluminum Alloys". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a01_481.
  13. "Sustainability of Aluminium in Buildings". European Aluminium Association. Retrieved 2012-03-06.
  14. "Materials in Watchmaking – From Traditional to Exotic". Watches. Infoniac.com. Retrieved 2009-06-06.
  15. "World's coinage uses 24 chemical elements, Part 1". World Coin News. 17 February 1992.
  16. "World's coinage uses 24 chemical elements, Part 2". World Coin News. 2 March 1992.
  17. "Sustainability of Aluminium in Buildings". European Aluminium Association. Vaadatud 2017-10-16
  18. “How to decide between anodizing, painting, and powder coating. Choosing the right coating for your aluminum.“ Southern Aluminum Finishing. Vaadatud 2017-10-07
  19. Schroeder, T. (2012). Anodize Analyzed. Technology Publishing Company. Coatings for architectural metals. A Durability + Design Collection. Lk. 15-20. Pittsburgh. Vaadatud 2017-10-11
  20. Frank, W. B. (2009). "Aluminum". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a01_459.pub2.^
  21. Totten, G. E.; Mackenzie, D. S. (2003). Handbook of Aluminum. Marcel Dekker. p. 40. ISBN 978-0-8247-4843-2.
  22. Ørsted (1827) "Fra 31 Maj 1824 til 31 Maj 1825", Det Kongelige Danske Videnskabernes Selskabs, Philosphiske og Historiske Afhandlinger.
  23. Wöhler, F. (1827). "Űber das Aluminium". Annalen der Physik und Chemie 11: 146–161.
  24. "Scientists born on July 3rd: Pierre Berthier". Today in Science History. Retrieved 2012-03-06.

Välislingid[muuda | muuda lähteteksti]