Rasvhapped

Allikas: Vikipeedia

Rasvhapped on pika alifaatse ahelaga karboksüülhapped, mis võivad esineda nii küllastunud kui ka küllastumata ühenditena. Enamiku looduslike rasvhapete süsinikuahel on 4–28 C-aatomit pikk.[1] Rasvhapped on enamiku lipiidide ehitusüksused – nad kuuluvad nii triglütseriidide, vahade, fosfolipiidide kui ka glükolipiidide koostisse. Vabad rasvhapped on need rasvhapped, mis ei ole seotud teiste ühenditega. Rasvhapped on organismis, eriti luustiku ja südamelihaste rakkudes, oluline energiaallikas, sest rasvhapete oksüdatsiooni käigus eraldub suures koguses ATP-d. Ajurakud kasutavad rasvhappeid energiaallikana vaid vähesel määral, sest eelistavad energiat toota glükoosist ja ketoonist.[2][3]

Rasvhapete liigid[muuda | muuda lähteteksti]

Eristatakse küllastunud rasvhappeid, kus C-aatomite vahelised sidemed on ühekordsed, ning küllastumata rasvhappeid, kus esineb vähemalt üks kaksikside kahe C-aatomi vahel. Rasvhappeid liigitatakse ka ahela pikkuse alusel järgmiselt:

Küllastumata rasvhapped[muuda | muuda lähteteksti]

Oleiinhappe trans- ja cis-isomeeride võrdlus

Küllastumata rasvhapetel on süsinikuaatomite vahel üks või enam kaksiksidet. Süsinikuaatomite paare, mis on ühendatud kaksiksidemega, saab küllastada, liites neile vesinikuaatomeid. Selle reaktsiooni tulemusel muutub kaksikside ehk küllastumata side ühekordseks ehk küllastunud sidemeks. Vastavalt aatomirühmade paiknemisele kaksiksideme tasapinna suhtes esinevad rasvhapped kas cis- või trans-isomeeridena. Küllastumata rasvhapete geomeetrilistel erinevustel on oluline osa bioloogilistes protsessides ja bioloogiliste struktuuride, eriti rakumembraanide ehituses.

Cis-isomeeria[muuda | muuda lähteteksti]

Cis-isomeeris asetsevad vesinikuaatomid kaksiksideme tasapinna suhtes samal poolel. Cis-isomeeri kaksikside on jäik, mistõttu on süsinikuahel vähe painduv ning kõver. Mida rohkem on ahelas cis-konfiguratsiooniga kaksiksidemeid, seda kõveram on ahel. Näiteks kui ühe kaksiksidemega oleiinhappel on üks vääne sees, siis kahe kaksiksidemega linoleenhappe struktuur on juba rohkem väändunud. Kolme kaksiksidemega linoleenhappe kuju on veel kõveram. Kõvera kuju tõttu ei saa triglütseriidide või biomembraani fosfolipiidide koostises olevaid cis-isomeere tihedalt kokku pakkida ning see omadus mõjutab nii membraani kui ka rasvade sulamistemperatuuri. Looduslike rasvhapete kaksiksidemed on tavaliselt cis-konfiguratsioonis.

Trans-isomeeria[muuda | muuda lähteteksti]

Trans-isomeeris asetsevad vesinikuaatomid kaksiksideme tasapinna suhtes vastaspooltel. Seetõttu ahel ei kõverdu ning on suhteliselt sirge. Trans-isomeerseid rasvhappeid looduses tavaliselt ei leidu, aga neid on võimalik saada nt hüdrogeenimise teel.

Küllastumata rasvhapete näiteid
Triviaalnimetus Struktuurivalem Δx C:D n-x
Palmitoleiinhape CH3(CH2)5CH=CH(CH2)7COOH cis-Δ9 16:1 n-7
Sapieenhape CH3(CH2)8CH=CH(CH2)4COOH cis-Δ6 16:1 n-10
Oleiinhape CH3(CH2)7CH=CH(CH2)7COOH cis-Δ9 18:1 n-9
Elaidiinhape CH3(CH2)7CH=CH(CH2)7COOH trans-Δ9 18:1 n-9
Vaktseenhape CH3(CH2)5CH=CH(CH2)9COOH trans-Δ11 18:1 n-7
Linoolhape CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH cis,cis-Δ912 18:2 n-6
Linoleiinhape CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH trans,trans-Δ912 18:2 n-6
Linoleenhape CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH cis,cis,cis-Δ91215 18:3 n-3
Arahhidoonhape CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH NIST cis,cis,cis,cis-Δ581114 20:4 n-6
Eikosapentaeenhape CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH cis,cis,cis,cis,cis-Δ58111417 20:5 n-3
Eruukhape CH3(CH2)7CH=CH(CH2)11COOH cis-Δ13 22:1 n-9
Dokosaheksaeenhape CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)2COOH cis,cis,cis,cis,cis,cis-Δ4710131619 22:6 n-3

Asendamatud rasvhapped[muuda | muuda lähteteksti]

Asendamatuteks rasvhapeteks kutsutakse neid rasvhappeid, mis on inimesele vajalikud, kuid mida inimese organism suudab vaid väheses koguses ise toota ja seega peab ta neid saama toidust. On kahte tüüpi asendamatuid rasvhappeid: need, kus kaksikside asub kolme süsinikuaatomi kaugusel ahela lõpus olevast metüülrühmast, ja need, kus kaksikside asub kuue süsinikuaatomi kaugusel ahela lõpus olevast metüülrühmast. Inimese organismil puudub võime sünteesida rasvhappeid, kus kaksiksidemed asuvad karboksüülrühmast loendatult kaugemal kui 9. või 10. süsinikuaatomi juures.[7] Asendamatud rasvhapped on näiteks linoolhape ja linoleenhape, mida leidub paljudes taimeõlides. Inimese võime muuta linoleenhape pikema ahelaga omega-3-rasvhappeks (nt eikosapentaeenhappeks või dokosaheksaeenhappeks) on piiratud, aga ta saab neid rasvhappeid omastada kalast.

Küllastunud rasvhapped[muuda | muuda lähteteksti]

Küllastunud rasvhapped on karboksüülhapped, mis ei sisalda kaksiksidet, sest on küllastunud vesinikuaatomitega. Kuna küllastunud rasvhapetes on C-aatomite vahel ainult ühekordsed sidemed, on iga süsinikuaatomiga seotud 2 vesinikuaatomit, välja arvatud omega-süsinik ahela lõpus, mis on seotud 3 H-aatomiga.

Küllastunud rasvhapete näiteid
Triviaalnimetus Struktuurivalem C:D
Võihape CH3CH2CH2COOH 4:0
Kapriinhape CH3(CH2)8COOH 10:0
Lauriinhape CH3(CH2)10COOH 12:0
Palmitiinhape CH3(CH2)14COOH 16:0
Steariinhape CH3(CH2)16COOH 18:0
Arahiinhape CH3(CH2)18COOH 20:0
Beheenhape CH3(CH2)20COOH 22:0
Lignotseriinhape CH3(CH2)22COOH 24:0
Tserotiinhape CH3(CH2)24COOH 26:0

Nomenklatuur[muuda | muuda lähteteksti]

Süsinikuaatomite nummerdamine

Rasvhapete nimetused põhinevad mitmel nomenklatuurisüsteemil. Järgnevas tabelis on ära toodud üldkasutatavad süsteemid.

Süsteem Näide Selgitus
Triviaalne nomenklatuur Linoleenhape Triviaalnimetused on mittesüsteemsed, kindlaks kujunenud ja kirjanduses kõige enam kasutatavad nimetused. Triviaalnimetused on enim levinud rasvhapetel. Need nimetused ei järgi kindlaid reegleid, on lühemad ja ühetähenduslikud.
Süstemaatiline nomenklatuur 9Z, 12Z, 15Z-oktadekatrieenhape Rasvhapete süstemaatilised nimetused tuginevad nii 1979. aastal avaldatud IUPACi orgaanilise keemia nomenklatuuri reeglitele[8] kui ka 1977. aastal avaldatud lipiidide nimetamise soovitustele.[9] Loendamist alustatakse karboksüülrühmast ahela lõpus. Kaksiksidemed märgistatakse vastavalt kas cis-trans-deskriptoritega või E- ja Z-deskriptoritega. Süstemaatiline nomenklatuur on triviaalnimetustega võrreldes küll sõnaohtram, kuid tehniliselt selgem ja deskriptiivsem.
Δx-nomenklatuur cis,cis,cis91215-oktadekatrieenhape Δx-nomenklatuuris on iga kaksikside välja toodud Δx-na. Kaksikside paikneb karboksüülrühmast loendatult x-nda süsinikuaatomi juures. Iga kaksikside märgistatakse veel cis- või trans-eesliitega, näitamaks kaksiksidemes olevate aatomite konformatsiooni. Näitena on siin ära toodud linoleenhappe vastav nimetus.
n-x-nomenklatuur n-3 n-x- ehk ω-x-nomenklatuuris antakse ühenditele nimetused ning ühtlasi ka liigitatakse eeldatava biosünteetilise raja järgi. Kaksikside asub terminaalsest metüülrühmast karboksüülrühma poole loendades x-nda süsinikuaatomi juures. Näiteks linoleenhape kuulub n-3- ehk ω-3-rasvhapete hulka ning tõenäoliselt on linoleenhappe ja teiste n-3-rasvhapete biosünteesi protsessid sarnased. ω-x-märgistust kasutatakse tavaliselt populaarteaduslikus kirjanduses, kuid IUPACi järgi peab tehnilistes dokumentides eelistama n-x-märgistust.[8] Kõige rohkem on uuritud n-3-ja n-6-rasvhapete biosünteesi.
Rasvhapete nummerdamine 18:3

18:3ω6

18:3,cis,cis,cis91215

Rasvhappeid nummerdatakse valemi C:D järgi, kus C tähistab süsinikuaatomite ja D kaksiksidemete arvu rasvhappes. Kuna eri rasvhappeid võib nummerdada samamoodi, esineb siin mitmetähenduslikkust, mille vältimiseks soovitatakse C:D tähistusele lisada kas Δx- või n-x-märgistus.[8]

Tööstuslik tootmine[muuda | muuda lähteteksti]

Tööstuses toodetakse rasvhappeid tavaliselt triglütseriidide hüdrolüüsi teel, mille abil eemaldatakse glütserool. Rasvhappeid saadakse ka fosfolipiididest. Rasvhappeid saab toota ka sünteetiliselt alkeenide karbonüülimise teel.

Rasvhapete biosüntees[muuda | muuda lähteteksti]

Rasvhapete biosüntees algab atsetüül-CoA karboksüülimisega malonüül-CoA-ks. Seejärel toimub rasvhappe ahela astmeline pikendamine, milles lisatakse iga liitumisreaktsiooniga kaks süsinikuaatomit. Seetõttu on peaaegu kõigil looduslikel rasvhapetel paarisarv süsinikuaatomeid. Peale sünteesi seotakse rasvhapped glütserooliga triglütseriidideks, mis on organismis eelistatuim rasvade ladustamise viis. Organismis ringlevad vabad rasvhapped on tekkinud triglütseriidide lagunemisel. Vabad rasvhapped ei lahustu vees, mistõttu seotakse nad vereplasma albumiiniga. Albumiini vabade sidumiskohtade arv määrab ära vabade rasvhapete hulga veres.

Rasvhapped toidurasvades[muuda | muuda lähteteksti]

Järgnevas tabelis on ära toodud rasvhapete, E-vitamiini ja kolesterooli sisaldus üldkasutatavates toidurasvades.[10] [11]

Küllastatud Monoküllastumatud Polüküllastumatud Kolesterool E-vitamiin
g/100g g/100g g/100g mg/100g mg/100g
Loomsed rasvad
Searasv 40,8 43,8 9,6 93 0,60
Pardirasv 33,2 49,3 12,9 100 2,70
Või 54,0 19,8 2,6 230 2,00
Taimsed rasvad
Kookosõli 85,2 6,6 1,7 0 0,66
Palmiõli 45,3 41,6 8,3 0 33,12
Nisuiduõli 18,8 15,9 60,7 0 136,65
Sojaõli 14,5 23,2 56,5 0 16,29
Oliiviõli 14,0 69,7 11,2 0 5,10
Maisiõli 12,7 24,7 57,8 0 17,24
Päevalilleõli 11,9 20,2 63,0 0 49,0
Saflooriõli 10,2 12,6 72,1 0 40,68
Kanepiõli 10 15 75 0 12,34
Rapsiõli 5,3 64,3 24,8 0 22,21

Rasvhapete keemilised omadused[muuda | muuda lähteteksti]

Rasvhapete keemilised omadused sarnanevad teiste karboksüülhapete omadustega. Näiteks tekib rasvhapete reageerimisel alkoholiga ester ning alusega reageerimisel sool.

Happelisus[muuda | muuda lähteteksti]

Rasvhapped on väga nõrgad happed ning ei erine eriti oma happelisuse poolest. Näiteks on nonaanhappe pKa väärtus 4,96, mis on ainult veidi nõrgem äädikhappe pKa väärtusest (4,76). Rasvhapete lahustuvus vees väheneb süsinikuahela pikenedes väga kiiresti, mistõttu on pika süsinikuahelaga rasvhapete mõju vesilahuse pH-le väga väike. Isegi need rasvhapped, mis vees ei lahustu, lahustuvud soojas etanoolis ja neid saab tiitrida NaOH-lahusega, kasutades indikaatorina fenoolftaleiini. Seda analüüsi kasutatakse vabade rasvhapete sisalduse määramiseks rasvades, st määratakse hüdrolüüsunud triglütseriidide sisaldust.

Hüdrogeenimine[muuda | muuda lähteteksti]

Küllastumata rasvhapete hüdrogeenimine on üldlevinud viis saada küllastunud rasvhappeid, mis ei rääsu kergesti. Kuna küllastunud rasvhapetel on kõrgem sulamistemperatuur kui küllastumata rasvhapetel, siis muutuvad vedelad rasvad hüdrogeenimise tagajärjel tahkeks. Seda tehnoloogiat kasutatakse taimeõlidest margariini tegemisel. Osalise hüdrogeenimise ajal võib küllastumata rasvhapete cis-konfiguratsioon muutuda trans-konfiguratsiooniks.[12] Kui hüdrogeenimisel kasutatakse tavalisest kõrgemat H2 rõhku ja kõrgemat temperatuuri, muutuvad rasvhapped rasvalkoholideks. Rasvhappe estritest saab rasvalkohole siiski lihtsamini toota.

Oksüdatsioon[muuda | muuda lähteteksti]

Küllastumata rasvhapete üks keemilisi omadusi on auto-oksüdatsioon hapniku juuresolekul. Seda protsessi kiirendavad metallide mikroelemendid. Metalliioonide eemaldamiseks töödeldakse rasvu ja õlisid tihti kelaatühenditega nagu näiteks sidrunhape. Oksüdatsiooni aeglustavad teatud määral ka taimeõlides sisalduvad antioksüdandid nagu tokoferool.

Osonolüüs[muuda | muuda lähteteksti]

Osooni toimel võivad küllastumata rasvhapped kergesti laguneda. Seda reaktsiooni kasutatakse oleiinhappest aselaiinhappe ((CH2)7(CO2H)2) tootmiseks.[12]

Ringlus organismis[muuda | muuda lähteteksti]

Imendumine[muuda | muuda lähteteksti]

Lühikese ja keskmise ahelaga rasvhapped imenduvad läbi soolestiku kapillaaride otse verre ja kantakse koos teiste toitainetega maksa värativeeni kaudu edasi. Pika ahelaga rasvhapped ei imendu otse soole kapillaaridesse, vaid soolehattudesse, kus moodustatakse nendest triglütseriidid. Triglütseriidid kaetakse kolesterooli ja valguga ühendiks, mida kutsutakse külomikroniks. Külomikronid viiakse lümfikapillaaridesse ning sealt lümfisüsteemi kaudu üles südame lähedale rinnajuhasse, sest selle ümber on arterid ja veenid laiemad. Rinnajuhast transporditakse külomikronid rangluualuse veeni kaudu vereringesse. Nüüd saavad külomikronid varustada kudesid triglütseriididega, mis kas ladustatakse või kasutatakse energia saamiseks.

Metabolism[muuda | muuda lähteteksti]

Rasvhapped, mida organism saab kas toidust või rasvkoes ladustunud triglütseriididest, viiakse rakkudesse, kus neid kasutatakse kas energiaallikana lihaste kontraktsioonis või üldises ainevahetuses. Raku sees transporditakse rasvhapped mitokondrisse, kus nad lagundatakse β-oksüdatsiooni või tsitraaditsükli käigus CO2-ks ja veeks, mille tulemusel eraldub suures koguses energiat ATP-na.

Jaotus[muuda | muuda lähteteksti]

Veres ringlevad rasvhapped on tihti seotud teiste ühenditega. Soolestikust transporditakse rasvhapped verre külomikronitesse pakitult, kuid peale töötlemist maksas viiakse rasvhapped vereringesse väga madala tihedusega lipoproteiinide ja madala tihedusega lipoproteiinide koostises. Veres ringleb ka vabu rasvhappeid, mida eraldavad rasvkoe rakud adipotsüüdid. On uuritud ja leitud, et iga inimene eritab koos piimhappe ja püroviinamarihappega naha kaudu just talle iseloomulikku rasvhapete segu, mistõttu suudavad tundliku lõhnatajuga loomad inimesi eristada.[13]

Vaata ka[muuda | muuda lähteteksti]

Viited[muuda | muuda lähteteksti]

  1. [1] "IUPAC Compendium of Chemical Terminology", 2. trükk, International Union of Pure and Applied Chemistry, 1997, ISBN 0-521-51150-X
  2. M. K. Campbell, S. O. Farrell. "Biochemistry", 5. trükk, lk 579, Cengage Learning, 2006, ISBN 0-534-40521-5
  3. [2]P. Schönfeld, G. Reiser. "Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain", Journal of Cerebral Blood Flow and Metabolism, Okt. 33(10), lk 1493-1499, 2013
  4. [3]G. den Besten jt. "The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism", Journal of Lipid Research, Sept., 54 (9), 2013
  5. 5,0 5,1 [4] C. Beermann, J. Jelinek, T. Reinecker, A. Hauenschild, G. Boehm, and H.-U. Klör. "Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers", 2:10, Lipids in Health and Disease, 2003
  6. [5]ScienceDirect – Very long chain fatty acid
  7. [6] S. R. Bolsover jt. "Cell Biology: A Short Course", 2. trükk, John Wiley & Sons, Inc, 2004
  8. 8,0 8,1 8,2 [7] J. Rigaudy, S. P. Klesney. "Nomenclature of Organic Chemistry", 1979, ISBN 0-08-022369-9, OCLC 5008199
  9. [8] "The Nomenclature of Lipids. Recommendations", European Journal of Biochemistry, 79:1, lk 11–211976, 1977
  10. Food Standards Agency, "McCance & Widdowson's the Composition of Foods, peatükk Fats and Oils", Royal Society of Chemistry, 1991
  11. Ted Altar. "More Than You Wanted To Know About Fats/Oils", Sundance Natural Foods
  12. 12,0 12,1 D. J. Anneken, S. Both, R. Christoph, G. Fieg, U. Steinberner, A. Westfechtel. "Fatty Acids in Ullmann's Encyclopedia of Industrial Chemistry", Wiley-VCH, Weinheim, 2006. DOI:10.1002/14356007.a10_245.pub2
  13. "Electronic Nose Created To Detect Skin Vapors", Science Daily, 2009

Välislingid[muuda | muuda lähteteksti]