Tensorkorrutis

Allikas: Vikipeedia
Jump to navigation Jump to search

Vektorite, maatriksite, tensorite, vektorruumide, algebrate, topoloogiliste vektorruumide, moodulite vms tensorkorrutis (tähis ⊗) on küll detailides erinevalt defineeritud, kuid on alati kõige üldisem bilineaarne kujutis.

Mõnes kontekstis on tensorkorrutis sama mis väliskorrutis.

Tensorkorrutis on defineeritud ka monoidaalsete kategooriate kontekstis.

Lineaaralgebras ja diferentsiaalgeomeetrias kirjeldatakse tensorkorrutiste abil multilineaarvorme. Kommutatiivses algebras ja algebralises geomeetrias vastab see ühelt poolt geomeetriliste struktuuride ahendile alamhulkadele, teiselt poolt geomeetriliste objektide otsekorrutisele.

Vektorruumide tensorkorrutis[muuda | muuda lähteteksti]

Olgu V ja W vektorruumid üle ühise korpuse. Siis tensorkorrutis

on vektorruum, mille võib konstrueerida järgmiselt. Kui on ruumi V baas ja on ruumi W baas, siis on vektorruum, milles leidub baas, mille elemente saab viia üksühesesse vastavusse lähteruumide baaside otsekorrutise

järjestatud paaridega. Ruumi mõõde võrdub seetõttu ruumide V ja W mõõdete korrutisega.

Selle baasi elementi, mis vastab järjestatud paarile , tähistatakse . Sümbolil ei ole sealjuures seni sügavamat tähendust. Nüüd võib selle baasi abil defineerida ruumide V ja W vektorite korrutise, mida tähistatakse sellesama tehtemärgiga. Loomulikult on kahe baasivektori ja korrutis just see baasivektor, mille tähiseks sai . Suvaliste vektorite korrutise saab nüüd bilineaarse jätku abil:

vektoritele ja , kus on lõplikud,

seatakse vastavusse korrutis

.

Lõplikumõõtmeliste vektorruumide V ja W korral saab tensorkorrutise konstrueerida maatriksite ruumina. Read nummerdatakse V baasiindeksiga , veerud W baasiindeksiga . Kahe vektori korrutis on maatriks, mille element kohal (i,j) on vektori v i-nda koordinaadi ja vektori w j-nda koordinaadi korrutis. Veerud on v kordsed, read on w kordsed. (Maatriksite keeles nimetatakse seda konstruktsiooni ka düaadiliseks korrutiseks.)