Rühmoid

Allikas: Vikipeedia
Disambig gray.svg  See artikkel räägib ühe binaarse algebralise tehtega hulgast; kategooriateooria mõiste kohta vaata artiklit Rühmoid (kategooria)

Rühmoid ehk grupoid on üldalgebras hulk M[1] (rühmoidi kandja) koos sellel defineeritud üheainsa binaarse algebralise tehtega[2] M × MM. Tehte tulemid kuuluvad definitsiooni põhjal hulka M. Mingeid muid tingimusi tehtele ei esitata.

Tegemist on ühega kõige lihtsamini defineeritud universaalalgebrate klassidest.

Nimetuse groupoid võttis kasutusele Øystein Ore. Nicolas Bourbaki eeskujul ("Éléments de mathématique", köide "Algèbre") on rühmoide hakatud nimetama magmadeks. Veel on neid nimetatud operatiivideks ja binaarideks.

Rühmoidide klassid[muuda | redigeeri lähteteksti]

Tavaliselt rühmoide üldisel kujul ei uurita, vaid lisatakse tehte omadusi täpsustavaid aksioome.

Sagedamini vaadeldavad rühmoidide klassid on:

Saab vaadelda ka kommutatiivseid poolrühmi ja kommutatiivseid monoide.

Näited[muuda | redigeeri lähteteksti]

Mittenäited[muuda | redigeeri lähteteksti]

Mitmekordsed tehted ja sulud[muuda | redigeeri lähteteksti]

Rühmoidi tehet võib sooritada mitu korda järjest. Et tehe ei ole üldjuhul assotsiatiivne, kasutatakse tehete sooritamise järjekorra näitamiseks sulgusid. Saadakse sõne, mis koosneb rühmoidi elemente tähistavatest sümbolitest ja tasakaalustavatest sulgudest. Kõikvõimalike tasakaalustavate sulgude sõnede hulka nimetatakse Dycki keel. Rühmoidi tehte n sooritamise järjekordade arv võrdub Catalani arvuga C_n. Näiteks C_2=2. Teiste sõnadega, (ab)c on a(bc) ainsad rühmoidi tehte kahe sooritamise järjekorrad kolme elemendiga.

Tähistuse lihtsustamiseks ja sulgude arvu vähendamiseks kasutatakse lisakokkuleppeid. Tehte sooritamise eelisjärjekorra märkimiseks kasutatakse tehtemärgi ärajätmist. Näiteks kui rühmoidi tehe on *, siis saab avaldise (x * y) * z panna kirja lühemal kujul. Lühendamiseks saab kasutada ka tühikuid. Näiteks avaldise ((x * y) * z) * (w * v) saab kirja panna kujul xy*z * wv. Keerukamate avaldiste puhul muidugi sulgudeta läbi ei saa. Sulgude alternatiiviks on küll näiteks prefikstähistus, kuid see on raskesti jälgitav.

Rühmoidide homomorfismid[muuda | redigeeri lähteteksti]

Next.svg Pikemalt artiklis Rühmoidide homomorfism

Rühmoidide homomorfism ehk rühmoidide morfism on kujutus f:M\to N rühmoidist M rühmoidi N, mis säilitab rühmoidi tehte:

f(x \; *_M \;y) = f(x) \; *_N\; f(y),

kus *_M on *_N vastavalt rühmoidi M ja rühmoidi N tehe.


Vaba rühmoid[muuda | redigeeri lähteteksti]

Next.svg Pikemalt artiklis Vaba rühmoid

Vaba rühmoidi mittetühjal hulgal X moodustavad formaalsed avaldised, mis on saadud hulga X elementide sümbolitest, millele on rakendatud rühmoidi tehet koos sulgudega. Olgu näiteks X=\{a,b,c\}. Siis sisaldab vaba poolrühm üle X muu hulgas elemente

a,\, b,\, c,\, ab,\, ba,\, (ab)c,\, a(bc),\, (aa)(bb),\, (a(ab))b,\, (ab)(ab), mis on kõik omavahel erinevad.

Formaalselt võib vaba poolrühma üle mittetühja hulga X defineerida kui hulga, millesse kuuluvad kõik lõplikud binaarpuud koos iga lehe juurde kirjutatud hulga X elemendiga. Kahe puu A ja B korrutis AB on puu, mille juurel on vasakpoolne alampuu A ja parempoolne alampuu B.

Üldistus[muuda | redigeeri lähteteksti]

Pseudorühmoid on hulk koos sellel defineeritud üheainsa osalise binaarse algebralise tehtega.

Märkused[muuda | redigeeri lähteteksti]

  1. M võib olla ka tühihulk. Sel juhul on tegu triviaalse rühmoidiga, mille tehe on tühi tehe.
  2. Teiste sõnadega, hulk on selle tehte suhtes kinnine.

Kirjandus[muuda | redigeeri lähteteksti]

  • A. A. Albert. Studies in Modern Algebra, Washington 1963.
  • Georges Papy. Einfache Verknüpfungsgebilde: Gruppoide, Vandenhoeck & Ruprecht, Göttingen 1969.
  • N. Bourbaki. Algèbre, 1970, ptk 1–3.
  • А. Г. Курош. бщая алгебра, М.: Мир 1973.
  • П. Кон. Универсальная алгебра, М.: Мир 1969.
  • Куликов Л. Я. Алгебра и теория чисел, М.: Высшая школа, 1979.
  • Lothar Gerritzen. Grundbegriffe der Algebra, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden 1994, ISBN 3-528-06519-2.
  • Th. Ihringer. Allgemeine Algebra, Heldermann, Lemgo 2003, ISBN 3-88538-110-9.

Välislingid[muuda | redigeeri lähteteksti]