Struktuurisemiootika: erinevus redaktsioonide vahel

Allikas: Vikipeedia
Eemaldatud sisu Lisatud sisu
MerlIwBot (arutelu | kaastöö)
P robot kustutas: en:Semiotics of the structure (deleted)
värskendus I
1. rida: 1. rida:
{{toimeta}}
{{toimeta}}
'''Struktuurisemiootika''' ([[inglise keel]]es ''semiotics of the structure'') on uurimissuund [[graafiteooria]] ja [[semiootika]] piirimail. See kujutab endast praktilist moodust [[struktuur]]i ja selle omaduste semiootiliseks modelleerimiseks <ref>Anderson, M., Merrell, F., 1991. On Semiotic Modeling. ISBN 9783110123142</ref>.
'''Struktuurisemiootika''' ([[inglise keel]]es ''semiotics of the structure'') on uurimissuund [[graafiteooria]] ja [[semiootika]] piirimail. See kujutab endast praktilist moodust [[struktuur]]i ja selle omaduste semiootiliseks modelleerimiseks ([[inglise keel]]es ka ''computational semiotic'') <ref> Rieger, Burghard B. 1998. A Systems Theoretical View on Computational Semiotics. Modeling text understanding as meaning constitution by SCIPS, in: ''Proceedings of the Joint IEEE Conference on the Science and Technology of Intelligent Systems (ISIC/CIRA/ISAS-98)'', Piscataway, NJ (IEEE/Omnipress) 1998, pp. 840-845 </ref>.


Graafe on mitmesuguste kaudsete [[invariant]]ide ([[polünoom]]ide, [[spekter|spektrite jt) baasil esitatud nö [[graafi kanooniline esitus|kanoonilisel kujul]] <ref> Y. Gurevich. ''From Invariants to Canonization''. – The Bull. of Euro. Assoc. for Comp. Sci., No. 63, 1997 </ref>. Paraku ei sisalda niisugused esitused teavet [[graafi struktuur]]i ja selle [[graafi sümmeetria|sümmeetriaomaduste]] kohta. Graafi esitamisel tema [[automorfismide rühm]]a põhjal tekib keerukama struktuuri puhul palju küsitavusi.
Struktuuri all mõistetakse siin selle üldist, abstraktset tähendust kui elementidevahelist seostust või organiseerimisvormi <ref>Schmidt, Henrik, 1991. Philosophisches Wörterbuch. Stuttgard. ISBN 5250017940</ref> <ref>Новая философская энциклопедия. 2001, Москва. ISBN 9785244011159</ref>. Struktuuri semiootika on üks paljudest objekt-orienteeritud semiootikatest <ref>Nöth, Winfried, 1990. Handbook of Semiotics. Indianapolis. ISBN 9780253209597</ref>.


==Eesmärgid==
== Selgitus ==
[[Pilt:Rubik's cube.svg|thumb|Näide 1. Rubiku kuubik kui struktuuri säilitav süsteem.]]
* Struktuuri üldise tähenduse lahti harutamine ja selle ''formaliseeritud tõlgendamine''.
Struktuuri all mõistetakse siin selle üldist, abstraktset tähendust kui elementidevahelist seostust või organiseerimisvormi <ref>Schmidt, Henrik, 1991. Philosophisches Wörterbuch. Stuttgard. ISBN 5250017940</ref> <ref>Новая философская энциклопедия. 2001, Москва. ISBN 9785244011159</ref>. ''Graafi struktuur'' on selle tippude ja tipupaaride omadus olla graafis invariantselt seostatud, st organiseeritud mingil kindlal viisil – st struktuuri üldise tähenduse kujutamine graafidel. Graafi struktuur on [[isomorfism|isomorfsete]] graafide klassi täielik [[invariant]].
* Struktuuri esitava ''semiootilise mudeli'' väljatöötamine.
* Struktuursete omaduste uurimine.


''Struktuuri'' ja ''invariandi'' mõisted on lihtsalt ja piltlikult selgitatavad [[Rubiku kuubik]]u põhjal.
==Lähteseisukohad==
Iga [[süsteem]]i puhul mängivad olulist rolli selle elementide ja seoste ''empiirilised omadused''. Igal süsteemil on oma [[funktsioon]] ja [[struktuur]]. Struktuur on süsteemi [[abstraktsioon]], selle "skelett", kus elemendid on minetanud oma empiirilised tähendused kuid nende erinevused avalduvad erinevate '''''positsioonide''''' näol struktuuris. Struktuur on kujutatav [[graaf]]ina ning seotud [[invariant]]suse ja [[isomorfism]]iga.


Kommentaarid Rubiku kuubiku elementide kohta:
[[Pilt:Rubik's cube.svg|thumb|Rubiku kuubik kui elementide positsioone (struktuuri) säilitav süsteem]]
a) Rubiku kuubiku igal tahul on üks element ''keskel'', neli elementi ''servades'' ja neli elementi ''nurkades''.
b) Kihti pöörates elementide "positsioonid" ei muutu, need jäävad ''invariantseks''.
c) Seega moodustavad kuubiku 6 elementi '''''„keskpositsiooni“''''', 24 elementi '''''„nurkpositsiooni“''''' ja 24 elementi '''''„servpositsiooni“'''''.
d) Rubiku kuubik on esitatav struktuuri säilitava graafina millel on '''''kolm tipupositsiooni'''''.
e) Elementide "positsioonid" langevad kokku ''rühma AutG orbiitidega''.


== Lähteprintsiip ==
Süsteemi, struktuuri ja positsiooni mõisted on lihtsalt ja piltlikult selgitatavad [[Rubiku kuubik]]u põhjal.
Lähtugem hüpoteetilisest kuid töötavast põhimõttest, graafi ''G'' struktuur ''S'' on identifitseeritav (mõõdetav) tribuut, <math>\,S=\mathfrak{F}(G)</math>, ning on modelleeritav tema „elementaarosakeste“, st tipupaaride identifitseerimise ehk märgistamise teel <ref> John-Tagore Tevet, 1990. ''Interpretations on some Graph Theoretical Problems'', Estonian Acad. of Sciences. </ref>.

Kommentaarid Rubiku kuubiku elementide positsioonide kohta: a) Rubiku kuubiku igal tahul on üks element ''keskel'', neli elementi ''servades'' ja neli elementi ''nurkades''. Seega kuubiku 6 elementi moodustavad '''''„keskpositsiooni“''''', 24 elementi '''''„nurkpositsiooni“''''' ja 24 elementi '''''„servpositsiooni“'''''. b) Kihti pöörates '''''süsteem muutub''''', sest muutuvad elementide empiiriliste omaduste, st värvide, omavahelised suhted. '''''Struktuur ei muutu''''', sest elementide positsioonid säilivad. c) Rubiku kuubik on esitatav struktuuri säilitava graafina millel on '''''kolm tipupositsiooni'''''.

Süsteemiteoreetiline ''positsiooni'' mõiste langeb kokku graafiteoorias kasutatava [[orbiit|orbiidi]] mõistega <ref>Harary, Frank, 1972. Graph Theory. Addison-Wesley</ref>. Isomorfsed graafid omavad üht ja sedasama struktuuri. Graafide isomorfismi tuvastamine ei tähenda veel struktuuri äratundmist, see kujutab endast vaid nende [[ekvivalentsus]]e kindlaksmääramist. Struktuuri ''äratundmine'' rajaneb selle kirjeldamisel spetsiifiliste [[märk]]ide (tunnuste) abil.


==Teostus==
==Teostus==
Struktuuri tuvastamise algoritm <ref> Tevet, John-Tagore. 2002. Isomorphism and Reconstruction of the Graphs: A constructive approach and development. ''S.E.R.R. '' Talinn. </ref> rajaneb lokaalsetel invariantidel ehk märkidel. See tuvastab: a) iga ''naabertippude paari'' jaoks selle kuuluvuse ''vöösse'' (vööde parve või ''oksa'') ning selle suuruse '''''+d'''''; b) iga ''mitte-naabertippude paari'' jaoks nendevahelise kauguse '''''–d''''' ja vastava ''ahela'' (või ahelate parve; c) mõlemal juhul ka vastavat vööd või ahelat moodustavate tippude arv '''''n''''' ja servade arv '''''m'''''.
Vastav [[algoritm]] <ref> Tevet, John-Tagore. 2002. Isomorphism and Reconstruction of the Graphs: A constructive approach and development. ''S.E.R.R. '' Talinn. </ref> rajaneb lokaalsetel invariantidel ehk märkidel. See tuvastab: a) iga ''naabertippude paari'' jaoks selle kuuluvuse ''vöösse'' (vööde parve või ''oksa'') ning selle suuruse '''''+d'''''; b) iga ''mitte-naabertippude paari'' jaoks nendevahelise kauguse '''''–d''''' ja vastava ''ahela'' (või ahelate parve; c) mõlemal juhul ka vastavat vööd või ahelat moodustavate tippude arv '''''n''''' ja servade arv '''''m'''''.


Struktuuri esitavateks märkideks on selle tipupaare eristavad ja iseloomustavad invariandid ehk '''''paari- ehk binaarmärgid''''' neliku '''''d.n.m.''''' kujul. Nende korrastatud (dekomponeeritud) süsteemi nimetatakse '''''semiootiliseks mudeliks S''''', mis kujutab endast struktuuri kirjeldavat ''teksti''.
Saadud invariant-nelikute, '''''paari- ehk binaarmärkide d.n.m.''''' korrastatud (dekomponeeritud) süsteem on '''''semiootiline mudel S''''', kui struktuuri kirjeldus.


Struktuuri uurimine tähendab selle mudeli '''''S''''' uurimist. Erinevate struktuuride arv võrdub mitteisomorfsete graafide arvuga. Struktuuride identsuse tuvastamine kujutab endast vastavate mudelite ekvivalentsuse lihtsat fikseerimist. [[File:Equivalence.jpg|thumb|alt=Structural equivalence|Example: Semiootiliste mudelite ja struktuuride ekvivalentsus.]]
Struktuuri uurimine tähendab selle mudeli '''''S''''' uurimist. Erinevate struktuuride arv võrdub mitteisomorfsete graafide arvuga. Struktuuride ekvivalentsuse tuvastamine kujutab endast vastavate mudelite ekvivalentsuse lihtsat fikseerimist. [[File:Equivalence.jpg|thumb|alt=Structural equivalence|Näide 2. Struktuuride ekvivalentsus ja graafide isomorfsus.]]


Kommentaarid näitele: a) Erinevad graafid omavad siin ''ekvivalentseid märgimaatrikseid'', st et nende ''struktuurid on ekvivalentsed'' ja vastavad ''graafid on isomorfsed''. b) Semiootiline mudel on tuvastanud kolm tipupositsiooni (-orbiiti) ja viis tipupaari orbiiti, sh kaks „mitteserva orbiiti“ c) Vastavused struktuuride vahel avalduvad tipupaari-orbiitide tasemel. d) Binaarmärgid tuvastavad iga tipupaari puhul selle sidususe, kuuluvuse teatud suurusega teesse, vöösse või klikki, näiteks '''''E: +3.6.10''''' tähendab: "see tipupaar kuulub rohkem kui ühte vösse pikkusega ''d=4''". e) Üldjuhul on struktuur tuvastatav oma ''lähte binaarmärkide'' tasemel kuid teatud sümmeetriliste graafide puhul peab kasutama ''täpsustatud binaarmärke''.
Kommentaarid näitele 2: a) Erinevad graafid omavad siin ''ekvivalentseid semiootilisi mudeleid'', st et nende ''struktuurid on ekvivalentsed'' ja vastavad ''graafid on isomorfsed''. b) Semiootiline mudel on tuvastanud kolm tipupositsiooni (-orbiiti) ja viis tipupaari orbiiti, sh kaks „mitteserva orbiiti“ c) Vastavused struktuuride vahel avalduvad tipupaari-orbiitide tasemel. d) Binaarmärgid tuvastavad iga tipupaari puhul tema "seisundi" struktuuris, näiteks '''''E: +3.6.10''''' tähendab: "see tipupaar kuulub rohkem kui ühte vösse pikkusega ''d=4''". e) Üldjuhul on struktuur tuvastatav oma ''lähte binaarmärkide'' tasemel kuid teatud sümmeetriliste graafide puhul peab kasutama ''täpsustatud binaarmärke''.


''Struktuurne ekvivalentsus'' on isomorfism tipupaari orbiitide tasemel. See on tuvastav vastavate mudelite lihtsa võrdlemise teel.
''Struktuurne ekvivalentsus'' on isomorfism tipupaari orbiitide tasemel. See on tuvastav vastavate mudelite lihtsa võrdlemise teel. Erinevate struktuuride arv võrdub graafide erinevate [[isomorfismiklass]]ide arvuga. Semiootiline mudel '''''S''''' esitab selle klassi graafide ühist struktuuri. Graafide isomorfismi tuvastamine ei tähenda veel struktuuri tuvastamist, see kujutab endast vaid nende [[ekvivalentsus]]e kindlaksmääramist.


Struktuuri semiootiline mudel avab seni vähe käsitletud või märkamatuks jäänud struktuurseid omadusi. Sel eesmärgil kasutatakse graafi '''''kaasgraafe''''', nagu ''täiend, binaargraaf, märgigraaf, ja naabergraafid''. On uuritud mitmesuguseid '''''regulaarsusi''''', nagu ''distants-, vöö-, klikk- ja tugev regulaarsus''. Semiootilise mudeli abil on õnnestunud arendada ''bi-, tri- jne. aluseliste struktuuride'' probleeme. <ref>Tevet, John-Tagore, 2010. Graafide varjatud külgi. ''S.E.R.R'',. Tallinn, ISBN 9789949213108</ref>.
Struktuuri olulisemaid omadusi on [[sümmeetria]]. '''''Sümmeetria''''' on graafi tippude ja tipupaaride omadus jaotuda ''orbiitideks'', st ''ekvivalentsus- või transitiivsusklassideks''. Sümmeetriaomadused, st ''orbiidid (positsioonid)'' on märgimaatriksis äratuntavad kui binaarmärkide ekvivalentsusklassid. Äratuntavad on nii tipu- kui ka tipupaari orbiidid (positsioonid), sh viimase puhul serva- ja "mitteserva"' orbiidid. See lihtne moodus asendab ja katab nende tavapärast käsitlemist [[automorfismirühm]]ade '''''AutG''''' abil <ref>Tevet, John-Tagore, 2010. Graafide varjatud külgi. ''S.E.R.R'',. Tallinn, ISBN 9789949213108</ref>.


Struktuuri olulisemaid omadusi on [[sümmeetria]]. Sümmeetriaomadused, st ''orbiidid (positsioonid)'' on märgimaatriksis äratuntavad kui binaarmärkide ekvivalentsusklassid. Äratuntavad on nii tipu- kui ka tipupaari orbiidid (positsioonid), sh viimase puhul serva- ja "mitteserva"' orbiidid. See lihtne moodus asendab ja katab nende tavapärast käsitlemist [[automorfismirühm]]ade '''''AutG''''' abil. On fikseeritud seaduspärasusi ''sümmeetriaomaduste'' ja ''tugevregulaarsuse'' vahel <ref>Tevet, John-Tagore, 2007. Bisümmeetrilise struktuuri semiootika. ''S.E.R.R'',. Tallinn</ref>. Sümmeetriatunnuste (graafi orbiitide arvu ja nende võimsuste) baasil on välja töötatud ''sümmeetriaomaduste klassifikatsioon''. Esitatakse moodus sümmeetria [[mõõt]]miseks. Ka asümmeetria on sümmeetriaomadus.
Orbiitidel on oluline rolli graafi struktuuri uurimisel. On fikseeritud seaduspärasusi ''sümmeetriaomaduste'' ja ''tugevregulaarsuse'' vahel <ref>Tevet, John-Tagore, 2007. Bisümmeetrilise struktuuri semiootika. ''S.E.R.R'',. Tallinn</ref>. Sümmeetriatunnuste (graafi orbiitide arvu ja nende võimsuste) baasil on välja töötatud ''sümmeetriaomaduste klassifikatsioon''. Esitatakse moodus sümmeetria [[mõõt]]miseks. Ka asümmeetria on sümmeetriaomadus.


Igale tipupaari orbiidile (positsioonile) vastab üks '''''positsioonistruktuur'''''. Selle moodustavad orbiiti kuuluvad tipupaarid ning see kujutab endast vahendit struktuuri nö varjatud külgede uurimiseks. Näiteks, on selgunud, et Folkmani graafi üheks positsioonistruktuuriks on Peterseni graaf, jne.
Igale tipupaari orbiidile (positsioonile) vastab üks '''''positsioonistruktuur'''''. Selle moodustavad orbiiti kuuluvad tipupaarid ning see kujutab endast vahendit struktuuri nö varjatud külgede uurimiseks. Näiteks, on selgunud, et Folkmani graafi üheks positsioonistruktuuriks on Peterseni graaf, jne.


== Arendus ==
Igale tipupaari orbiidile (positsioonile) vastab ka üks '''''naaberstruktuur''''', mis saadakse serva eemaldamisel või lisamisel orbiiti kuuluva tipupaari vahele. Need moodustavad ''n-'' tipuliste '''''struktuuride konstruktiivse süsteemi''''' <ref>Tevet, John-Tagore, 2007. System analysis of the graphs. Tallinn, online: (http://tallinn.ester.ee/record=b2297694~S1*est )</ref>. See on seotud [[Ulami hüpotees]]i ehk '''''rekonstruktsiooniprobleemiga'''''.
Igale tipupaari orbiidile (positsioonile) vastab ka üks '''''naaberstruktuur''''', mis saadakse serva eemaldamisel või lisamisel orbiiti kuuluva tipupaari vahele. Need moodustavad ''n-'' tipuliste '''''struktuuride konstruktiivse süsteemi''''' <ref>Tevet, John-Tagore, 2007. System analysis of the graphs. Tallinn, online: (http://tallinn.ester.ee/record=b2297694~S1*est )</ref>. See on seotud [[Ulami hüpotees]]i ehk '''''rekonstruktsiooniprobleemiga'''''.



Redaktsioon: 28. veebruar 2012, kell 20:28

Struktuurisemiootika (inglise keeles semiotics of the structure) on uurimissuund graafiteooria ja semiootika piirimail. See kujutab endast praktilist moodust struktuuri ja selle omaduste semiootiliseks modelleerimiseks (inglise keeles ka computational semiotic) [1].

Graafe on mitmesuguste kaudsete invariantide (polünoomide, [[spekter|spektrite jt) baasil esitatud nö kanoonilisel kujul [2]. Paraku ei sisalda niisugused esitused teavet graafi struktuuri ja selle sümmeetriaomaduste kohta. Graafi esitamisel tema automorfismide rühma põhjal tekib keerukama struktuuri puhul palju küsitavusi.

Selgitus

Näide 1. Rubiku kuubik kui struktuuri säilitav süsteem.

Struktuuri all mõistetakse siin selle üldist, abstraktset tähendust kui elementidevahelist seostust või organiseerimisvormi [3] [4]. Graafi struktuur on selle tippude ja tipupaaride omadus olla graafis invariantselt seostatud, st organiseeritud mingil kindlal viisil – st struktuuri üldise tähenduse kujutamine graafidel. Graafi struktuur on isomorfsete graafide klassi täielik invariant.

Struktuuri ja invariandi mõisted on lihtsalt ja piltlikult selgitatavad Rubiku kuubiku põhjal.

Kommentaarid Rubiku kuubiku elementide kohta: a) Rubiku kuubiku igal tahul on üks element keskel, neli elementi servades ja neli elementi nurkades. b) Kihti pöörates elementide "positsioonid" ei muutu, need jäävad invariantseks. c) Seega moodustavad kuubiku 6 elementi „keskpositsiooni“, 24 elementi „nurkpositsiooni“ ja 24 elementi „servpositsiooni“. d) Rubiku kuubik on esitatav struktuuri säilitava graafina millel on kolm tipupositsiooni. e) Elementide "positsioonid" langevad kokku rühma AutG orbiitidega.

Lähteprintsiip

Lähtugem hüpoteetilisest kuid töötavast põhimõttest, graafi G struktuur S on identifitseeritav (mõõdetav) tribuut, , ning on modelleeritav tema „elementaarosakeste“, st tipupaaride identifitseerimise ehk märgistamise teel [5].

Teostus

Vastav algoritm [6] rajaneb lokaalsetel invariantidel ehk märkidel. See tuvastab: a) iga naabertippude paari jaoks selle kuuluvuse vöösse (vööde parve või oksa) ning selle suuruse +d; b) iga mitte-naabertippude paari jaoks nendevahelise kauguse –d ja vastava ahela (või ahelate parve; c) mõlemal juhul ka vastavat vööd või ahelat moodustavate tippude arv n ja servade arv m.

Saadud invariant-nelikute, paari- ehk binaarmärkide d.n.m. korrastatud (dekomponeeritud) süsteem on semiootiline mudel S, kui struktuuri kirjeldus.

Struktuuri uurimine tähendab selle mudeli S uurimist. Erinevate struktuuride arv võrdub mitteisomorfsete graafide arvuga. Struktuuride ekvivalentsuse tuvastamine kujutab endast vastavate mudelite ekvivalentsuse lihtsat fikseerimist.

Structural equivalence
Näide 2. Struktuuride ekvivalentsus ja graafide isomorfsus.

Kommentaarid näitele 2: a) Erinevad graafid omavad siin ekvivalentseid semiootilisi mudeleid, st et nende struktuurid on ekvivalentsed ja vastavad graafid on isomorfsed. b) Semiootiline mudel on tuvastanud kolm tipupositsiooni (-orbiiti) ja viis tipupaari orbiiti, sh kaks „mitteserva orbiiti“ c) Vastavused struktuuride vahel avalduvad tipupaari-orbiitide tasemel. d) Binaarmärgid tuvastavad iga tipupaari puhul tema "seisundi" struktuuris, näiteks E: +3.6.10 tähendab: "see tipupaar kuulub rohkem kui ühte vösse pikkusega d=4". e) Üldjuhul on struktuur tuvastatav oma lähte binaarmärkide tasemel kuid teatud sümmeetriliste graafide puhul peab kasutama täpsustatud binaarmärke.

Struktuurne ekvivalentsus on isomorfism tipupaari orbiitide tasemel. See on tuvastav vastavate mudelite lihtsa võrdlemise teel. Erinevate struktuuride arv võrdub graafide erinevate isomorfismiklasside arvuga. Semiootiline mudel S esitab selle klassi graafide ühist struktuuri. Graafide isomorfismi tuvastamine ei tähenda veel struktuuri tuvastamist, see kujutab endast vaid nende ekvivalentsuse kindlaksmääramist.

Struktuuri olulisemaid omadusi on sümmeetria. Sümmeetria on graafi tippude ja tipupaaride omadus jaotuda orbiitideks, st ekvivalentsus- või transitiivsusklassideks. Sümmeetriaomadused, st orbiidid (positsioonid) on märgimaatriksis äratuntavad kui binaarmärkide ekvivalentsusklassid. Äratuntavad on nii tipu- kui ka tipupaari orbiidid (positsioonid), sh viimase puhul serva- ja "mitteserva"' orbiidid. See lihtne moodus asendab ja katab nende tavapärast käsitlemist automorfismirühmade AutG abil [7].

Orbiitidel on oluline rolli graafi struktuuri uurimisel. On fikseeritud seaduspärasusi sümmeetriaomaduste ja tugevregulaarsuse vahel [8]. Sümmeetriatunnuste (graafi orbiitide arvu ja nende võimsuste) baasil on välja töötatud sümmeetriaomaduste klassifikatsioon. Esitatakse moodus sümmeetria mõõtmiseks. Ka asümmeetria on sümmeetriaomadus.

Igale tipupaari orbiidile (positsioonile) vastab üks positsioonistruktuur. Selle moodustavad orbiiti kuuluvad tipupaarid ning see kujutab endast vahendit struktuuri nö varjatud külgede uurimiseks. Näiteks, on selgunud, et Folkmani graafi üheks positsioonistruktuuriks on Peterseni graaf, jne.

Arendus

Igale tipupaari orbiidile (positsioonile) vastab ka üks naaberstruktuur, mis saadakse serva eemaldamisel või lisamisel orbiiti kuuluva tipupaari vahele. Need moodustavad n- tipuliste struktuuride konstruktiivse süsteemi [9]. See on seotud Ulami hüpoteesi ehk rekonstruktsiooniprobleemiga.

Rekonstrueerimisprobleemi puhul võib rääkida suurimatest alamgraafidest nii tippude G/v kui ka servade G/e eemaldamise mõttes [10]. Servade puhul saab rääkida ka väikseimatest ülemgraafidest.

Example: Kuueelemendiliste struktuuride konstruktiivse süsteemi võre esimene pool.

Vanameistri W. T. Tutte järgi peaks rekonstruktsiooniprobleemi lahenduse otsingud baseeruma isomorfismiklassidel, mis loob täiesti uue pildi sellest probleemist. [11]

Isomorfismiklass kujutab endast isomorfsete graafide hulka. Isomorfsed graafid omavad üht ja sama struktuuri. See struktuur on kujutatav kanooniliselt vastava semiootilise mudeli S näol. Igal graafil (struktuuril) on oma suurimad alamgraafid (naaberstruktuurid) ja väikseimad ülemgraafid (naaberstruktuurid) mis saadakse vastavalt serva (seose) eemaldamisel või lisamisel. Kõik n-tipulised graafid (n-elemendilised struktuurid) moodustavad võre mille elementideks („tippudeks“) on struktuurid (vastavat isomorfismiklassi esindavad graafid) ja seosteks („servadeks“) struktuuridevahelised seosed.

Kommentaarid näitele: a) Iga graaf selles kuueelemendilise struktuuride võres esindab oma isomorfismiklassi ehk struktuuri, mis on esitet maatriksi S näol. b) Iga struktuur selles võres on mõne(de) teise (teiste) struktuuri(de) suurim alamstruktuur või väikseim ülemstruktuur. c) Iga struktuur on dekomponeeritav oma suurimateks alamstruktuurideks või komponeeritav oma väikseimateks ülemstruktuurideks. d) Iga struktuur on rekonstrueeritav (taastatav) oma nii oma suurimate alamstruktuuride kui ka väikseimate ülemstruktuuride baasil. e) Eelmises näites esitatud struktuur kannab siin järjekorranumbrit 22. f) Esitatud struktuuride täiendid asuvad sümmeetriliselt selle võre teises pooles. g) Kuueelemendiliste struktuuride (mitteisomorfsete graafide) arv on 156.

Kõik struktuurid (graafid) kuuluvad niisugustesse võredesse. Naaberstruktuurideks on siin nii suurimaid alam- kui ka väiksemaid ülemstruktuure. Rekonstruktsiooniprobleem seisneb vaid küsimuses: Kas erinevad struktuurid saavad omada täpselt ühesuguseid naaberstruktuure. Sellele probleemile üksikute graafiklasside pidi lähenemine oleks absurdne.

Kokkuvõte

Struktuur (ladina sõna structura(sise)ehitus) on defineeritud kui süsteemi elementide (peamiselt püsivat) sidususe- või organiseerituse vormi. Aja jooksul on "struktuur" hargnenud eritähenduslikeks mõisteteks või on muutunud sisult ähmaseks käibesõnaks [12].

Struktuurisemiootika püüab mõistele "struktuur" omistada kindla tähenduse ja sisu: struktuur on isomorfsete graafide täielik invariant, st struktuuri invariantsete atribuutide süsteem, mis on esitatud semiootilise mudeli S ehk struktuuri teksti näol.

Tegemist on küllaltki delikaatse teemaga. Esiteks, tänapäeval puudub struktuuri mõiste kõiki rahuldav määratlus, teiseks, mõned matemaatikud ei aktsepteeri graafide struktuurisemiootilist käsitlemist ja kolmandaks, semiootikat on siin käsitletud üsna pinnapealselt.

Vaatamata sellele avab struktuurisemiootika graafide „varjatud külgi“, lahendab mõningaid klassikalisi probleeme mitteklassikalisel viisil ning püstitab ja lahendab uusi. Peamiseks probleemiks on struktuuri kanooniline esitamine ja struktuuride süsteemi konstrueerimine, mis on seotud taastatavuse ülesandega.

Struktuuri ja struktuurse ekvivalentsuse tuvastamise keerukus sõltub vaid tipupaaride arvust ja see ei ole võrreldav isomorfismi tuvastamise toimingutega. Struktuurisemiootika kujutab endast heuristiliste meetodite kompleksi struktuursete omaduste tundmaõppimiseks.

Viited

  1. Rieger, Burghard B. 1998. A Systems Theoretical View on Computational Semiotics. Modeling text understanding as meaning constitution by SCIPS, in: Proceedings of the Joint IEEE Conference on the Science and Technology of Intelligent Systems (ISIC/CIRA/ISAS-98), Piscataway, NJ (IEEE/Omnipress) 1998, pp. 840-845
  2. Y. Gurevich. From Invariants to Canonization. – The Bull. of Euro. Assoc. for Comp. Sci., No. 63, 1997
  3. Schmidt, Henrik, 1991. Philosophisches Wörterbuch. Stuttgard. ISBN 5250017940
  4. Новая философская энциклопедия. 2001, Москва. ISBN 9785244011159
  5. John-Tagore Tevet, 1990. Interpretations on some Graph Theoretical Problems, Estonian Acad. of Sciences.
  6. Tevet, John-Tagore. 2002. Isomorphism and Reconstruction of the Graphs: A constructive approach and development. S.E.R.R. Talinn.
  7. Tevet, John-Tagore, 2010. Graafide varjatud külgi. S.E.R.R,. Tallinn, ISBN 9789949213108
  8. Tevet, John-Tagore, 2007. Bisümmeetrilise struktuuri semiootika. S.E.R.R,. Tallinn
  9. Tevet, John-Tagore, 2007. System analysis of the graphs. Tallinn, online: (http://tallinn.ester.ee/record=b2297694~S1*est )
  10. Harary, Frank. 1964. On the reconstruction of a graph from a collection of subgraphs. – Theory of Graphs and its Applications - Proc. Sympos. Smolenice, 1963). Publ. House Czechoslovak Acad. Sci., Prague, 1964, pp. 47–52
  11. Tutte. W. T. 1998. Graph Theory As I Have Known It. Clarendon Press, Oxford.
  12. The Penguin Dictionary of Philosophy. 1997, London. ISBN 0140512500

Valik kirjandust

  • Rieger, Burghard B. 1998. A Systems Theoretical View on Computational Semiotics. Modeling text understanding as meaning constitution by SCIPS, in: Proceedings of the Joint IEEE Conference on the Science and Technology of Intelligent Systems (ISIC/CIRA/ISAS-98), Piscataway, NJ (IEEE/Omnipress) 1998, pp. 840-845.
  • Tevet, John-Tagore 1990. Interpretations on some Graph Theoretical Problems, Tallinn.
  • Tevet, John-Tagore, 2006. Graafide struktuurisemiootiline käsitlus. S.E.R.R., Tallinn, online: (http://tallinn.ester.ee/record=b2266686~S1*est )
  • Martin, Jüri and Tevet, John-Tagore, 2007. The Second Estonian Conference on Graphs and Applications. – Baltic Horizons, No 8 (107) (Special issue Dedicated to 270 years of Graph Theory),5-8, December 2007.
  • Tevet, John-Tagore, 2007. Valik graafide struktuure. S.E.R.R., Tallinn, ISBN 9789949153763, online: (http://tallinn.ester.ee/record=b2287285~S1*est )
  • Dharwadker, Ashay and Tevet, John-Tagore, 2009. The Graph Isomorphism Algorithm. S.E.R.R., Tallinn, ISBN 9781466394377, online: (http://www.dharwadker.org/tevet/isomorphism )
  • Tevet, John-Tagore, 2009. Graafi semiootiliste invariantide müsteerium. S.E.R.R., Tallinn, ISBN 9789949185108, online: (http://tallinn.ester.ee/record=b2490321~S1*est )
  • Tevet, John-Tagore, 2010. Semiotic Mystery of Canonical Presentation, Isomorphism and Reconstruction. – Baltic Horizons No 14 (111), pp 51-73.

Välislingid