Juhuslik suurus

Allikas: Vikipeedia

Tõenäosusteoorias ja matemaatilises statistikas nimetatakse juhuslikuks suuruseks suurust, mille väärtus sõltub juhusest.[1] Formaalsema definitsiooni järgi on juhuslik suurus funktsioon, mis seab juhusliku katse igale võimalikule tulemusele (elementaarsündmusele) vastavusse mingi suuruse.[2]

Kui see suurus on arv, siis räägitakse juhuarvust. Juhuarvude näited on kahe täringu veeretamise silmade summa ja võidu suurus õnnemängus. Juhuslikud suurused võivad olla ka keerukamad matemaatilised objektid, näiteks juhuslikud liikumised, juhuslikud permutatsioonid ja juhuslikud graafid.

Ühel juhuslikul katsel põhinevad paljud erinevad juhuslikud suurused.[3] Üksikut väärtust, mille juhuslik suurus juhusliku katse tegemisel omandab, nimetatakse realisatsiooniks[4] või juhusliku suuruse puhul ka trajektooriks.

Termin "juhuslik suurus" (zufällige Gröβe) pärineb Andrei Kolmogorovilt (Die Grundbegriffe der Wahrscheinlichkeitsrechnung 1933).[5]

Formaalse mõiste motivatsioon[muuda | muuda lähteteksti]

Juhusliku suuruse väärtused sõltuvad juhust esindavast suurusest . Näiteks võib olla kulli ja kirja viskamise juhuslik tulemus. Siis võib näiteks kihlvedu kulli ja kirja viskamise tulemuse peale modelleerida juhusliku suurusega. Oletame, et veeti kihla arvu peale, nii et õige äraarvamise puhul makstakse välja 1 euro, vastasel korral ei maksta midagi. Olgu väljamakstav summa. Et -i väärtus sõltub juhusest, siis on juhuslik suurus, täpsemalt reaalarvuline juhuslik suurus. Ta kujutab visketulemuste hulga võimalike väljamakstavate summade hulgale :

Viited[muuda | muuda lähteteksti]

  1. Norbert Henze. Stochastik für Einsteiger: Eine Einführung in die faszinierende Welt des Zufalls, Vieweg+Teubner Verlag 2010, ISBN 978-3-8348-0815-8, lk 12.
  2. Jörg Bewersdorff. Glück, Logik und Bluff. Mathematik im Spiel - Methoden, Ergebnisse und Grenzen, 6. trükk, Springer Spektrum: Wiesbaden 2012, ISBN 978-3-8348-1923-9, lk 39.
  3. Jörg Bewersdorff. Glück, Logik und Bluff. Mathematik im Spiel - Methoden, Ergebnisse und Grenzen, 6. trükk, Springer Spektrum: Wiesbaden 2012, ISBN 978-3-8348-1923-9, lk 39.
  4. David Meintrup, Stefan Schäffler. Stochastik: Theorie und Anwendungen, Springer-Verlag 2005, ISBN=978-3-540-21676-6, lk 456-457
  5. Jeff Miller. Earliest Known Uses of Some of the Words of Mathematics, jaotis R.