Fail:Window function and frequency response - Rectangular.svg

Lehekülje sisu ei toetata teistes keeltes.
Klõps ikoonil viib faili leheküljele Wikimedia Commonsis.
Allikas: Vikipeedia

Algfail(SVG-fail, algsuurus 512 × 256 pikslit, faili suurus: 157 KB)

Lühikirjeldus

Kirjeldus
English: Window function and its Fourier transform: Rectangular window
Kuupäev
Allikas Üleslaadija oma töö
Autor Bob K (original version), Olli Niemitalo, BobQQ
Luba
(Faili edasikasutus)
Autoriõiguse omanikuna avaldan selle teose järgmise litsentsi all:
Creative Commons CC-Zero See fail on avaldatud Creative Commonsi üldise litsentsi CC0 1.0 all.
Isik, kes sidus teose selle litsentsiga, on andnud teose avalikku omandisse, loobudes üleilmselt seadusega lubatud ulatuses kõigist õigustest, mis tulenevad autoriõigusseadusest, sealhulgas autoriõigusega kaasnevatest õigustest ja naaberõigustest. Tohid teost kopeerida, muuta, levitada ja esitada; seda kõike luba küsimata ja ka ärilisel eesmärgil.

Teised versioonid

The SVG images generated by the enclosed Octave source code replace the older PNG images.

See Window function (rectangular).png for example of writing .png files
SVG genesis
InfoField
W3C grn 
The SVG code is valid (1 warning)
BlueOnionCut 
See vektorkujutis on valmistatud rakendusega perl, tegi Olli Niemitalo
Outputs
InfoField
The script below generates these SVG images:

This Octave script is not MATLAB-compatible. Things you may need to install to run the script:

  • Octave
  • gnuplot
  • epstool
  • pstoedit
  • transfig

For viewing the svg files using "display", you may want to install:

  • librsvg2-bin
Gnu Octave and Perl Scripts
InfoField

Octave code

graphics_toolkit gnuplot
pkg load signal

% Characteristics common to both plots
  set(0, "DefaultAxesFontName", "Microsoft Sans Serif")
  set(0, "DefaultTextFontName", "Microsoft Sans Serif") 
  set(0, "DefaultAxesTitleFontWeight", "bold")
  set(0, "DefaultAxesFontWeight",      "bold")
  set(0, "DefaultAxesFontSize", 20)
  set(0, "DefaultAxesLineWidth", 3)
  set(0, "DefaultAxesBox", "on")
  set(0, "DefaultAxesGridLineStyle", "-")
  set(0, "DefaultAxesGridColor", [0 0 0])  % black
  set(0, "DefaultAxesGridAlpha", 0.25)     % opaqueness of grid
  set(0, "DefaultAxesLayer", "bottom")     % grid not visible where overlapped by graph
%========================================================================
function plotWindow (w, wname, wfilename = "", wspecifier = "", wfilespecifier = "")
 
  close     % If there is a previous screen image, remove it.
  M = 32;   % Fourier transform size as multiple of window length
  Q = 512;  % Number of samples in time domain plot
  P = 40;   % Maximum bin index drawn
  dr = 130; % (dynamic range) Maximum attenuation (dB) drawn in frequency domain plot
 
  L = length(w);
  B = L*sum(w.^2)/sum(w)^2;              % noise bandwidth (bins)
  
  n = [0 : 1/Q : 1];
  w2 = interp1 ([0 : 1/(L-1) : 1], w, n);
 
  if (M/L < Q)
    Q = M/L;
  endif
 
  figure("position", [1 1 1200 600])  % width = 2×height, because there are 2 plots
% Plot the window function
  subplot(1,2,1)
  area(n,w2,"FaceColor", [0 0.4 0.6], "edgecolor", [0 0 0], "linewidth", 1)
  
  g_x = [0 : 1/8 : 1];    % user defined grid X [start:spaces:end]
  g_y = [0 : 0.1 : 1];
  set(gca,"XTick", g_x)
  set(gca,"YTick", g_y)

% Special y-scale if filename includes "flat top"
  if(index(wname, "flat top"))
    ylimits = [-0.1 1.05];
  else
    ylimits = [0 1.05];
  endif
  ylim(ylimits)
  ylabel("amplitude","FontSize",28)  
  set(gca,"XTickLabel",[" 0"; " "; " "; " "; " "; " "; " "; " "; "  N"])
  grid("on")
  xlabel("samples","FontSize",28)
#{
% This is a disabled work-around for an Octave bug, if you don't want to run the perl post-processor.
  text(-.18, .4,"amplitude","rotation",90, "Fontsize", 28);
  text(1.15, .4,"decibels", "rotation",90, "Fontsize", 28);
#}

%Construct a title from input arguments.
%The default interpreter is "tex", which can render subscripts and the following Greek character codes:
%  \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu \nu \xi \o
%  \pi \varpi \rho \sigma \varsigma \tau \upsilon \phi \chi \psi \omega.
%
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname," window"), "FontSize", 28)    
  elseif (length(strfind (wspecifier, "&#")) == 0 )
    title(cstrcat(wname,' window (', wspecifier, ')'), "FontSize", 28)
  else
% The specifiers '\sigma_t' and '\mu' work correctly in the output file, but not in subsequent thumbnails.
% So UNICODE substitutes are used.  The tex interpreter would remove the & character, needed by the Perl script.
    title(cstrcat(wname,' window (', wspecifier, ')'), "interpreter", "none", "FontSize", 28)
  endif
  ax1 = gca;
 
% Compute spectal leakage distribution
  H = abs(fft([w zeros(1,(M-1)*L)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
  n = ([1:M*L]-1-M*L/2)/M;
  k2 = [-P : 1/M : P];
  H2 = interp1 (n, H, k2);
 
% Plot the leakage distribution
  subplot(1,2,2)
  h = stem(k2,H2,"-");
  set(h,"BaseValue",-dr)
  xlim([-P P])
  ylim([-dr 6])
  set(gca,"YTick", [0 : -10 : -dr])
  set(findobj("Type","line"), "Marker", "none", "Color", [0.8710 0.49 0])
  grid("on")
  set(findobj("Type","gridline"), "Color", [.871 .49 0])
  ylabel("decibels","FontSize",28)
  xlabel("bins","FontSize",28)
  title("Fourier transform","FontSize",28)
  text(-5, -126, ['B = ' num2str(B,'%5.3f')],"FontWeight","bold","FontSize",14)
  ax2 = gca;

% Configure the plots so that they look right after the Perl post-processor.
% These are empirical values (trial & error).
% Note: Would move labels and title closer to axes, if I could figure out how to do it.
  x1 = .08;         %   left margin for y-axis labels
  x2 = .02;         %  right margin
  y1 = .14;         % bottom margin for x-axis labels
  y2 = .14;         %    top margin for title
  ws = .13;         % whitespace between plots
  width  = (1-x1-x2-ws)/2;
  height = 1-y1-y2;
  set(ax1,"Position", [x1         y1 width height])      % [left bottom width height]
  set(ax2,"Position", [1-width-x2 y1 width height])
  
%Construct a filename from input arguments.
  if (strcmp (wfilename, ""))
    wfilename = wname;
  endif
  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif
  if (strcmp (wfilespecifier, ""))
    savetoname = cstrcat("Window function and frequency response - ", wfilename, ".svg");
  else
    savetoname = cstrcat("Window function and frequency response - ", wfilename, " (", wfilespecifier, ").svg");
  endif
  print(savetoname, "-dsvg", "-S1200,600")
% close    % Relocated to the top of the function
endfunction

%========================================================================
global N L 
% Generate odd-length, symmetric windows
N = 2^16;          % Large value ensures most accurate value of B
n = 0:N;
L = length(n);     % Window length

%========================================================================
w = ones(1,L);
plotWindow(w, "Rectangular")

%========================================================================
w = 1 - abs(n-N/2)/(L/2);
plotWindow(w, "Triangular")

% Indistinguishable from Triangular for large N
% w = 1 - abs(n-N/2)/(N/2);
% plotWindow(w, "Bartlett")
 
%========================================================================
w = parzenwin(L).';
plotWindow(w, "Parzen");

%========================================================================
w = 1-((n-N/2)/(N/2)).^2;
plotWindow(w, "Welch");

%========================================================================
w = sin(pi*n/N);
plotWindow(w, "Sine")
 
%========================================================================
w = 0.5 - 0.5*cos(2*pi*n/N);
plotWindow(w, "Hann")
 
%========================================================================
w = 0.53836 - 0.46164*cos(2*pi*n/N);
plotWindow(w, "Hamming", "Hamming", 'a_0 = 0.53836', "alpha = 0.53836")
 
%========================================================================
w = 0.42 - 0.5*cos(2*pi*n/N) + 0.08*cos(4*pi*n/N);
plotWindow(w, "Blackman")
 
%========================================================================
w = 0.355768 - 0.487396*cos(2*pi*n/N) + 0.144232*cos(4*pi*n/N) -0.012604*cos(6*pi*n/N);
plotWindow(w, "Nuttall", "Nuttall", "continuous first derivative")

%========================================================================
w = 0.3635819 - 0.4891775*cos(2*pi*n/N) + 0.1365995*cos(4*pi*n/N) -0.0106411*cos(6*pi*n/N);
plotWindow(w, "Blackman-Nuttall", "Blackman-Nuttall")
 
%========================================================================
w = 0.35875 - 0.48829*cos(2*pi*n/N) + 0.14128*cos(4*pi*n/N) -0.01168*cos(6*pi*n/N);
plotWindow(w, "Blackman-Harris", "Blackman-Harris")
 
%========================================================================
% Matlab coefficients
a = [0.21557895 0.41663158 0.277263158 0.083578947 0.006947368];
% Stanford Research Systems (SRS) coefficients
% a = [1  1.93  1.29  0.388  0.028];
% a = a / sum(a);
w = a(1) - a(2)*cos(2*pi*n/N) + a(3)*cos(4*pi*n/N) -a(4)*cos(6*pi*n/N) +a(5)*cos(8*pi*n/N);
plotWindow(w, "flat top")
 
%========================================================================
% The version using \sigma no longer renders correct thumbnail previews.
% Ollie's older version using &#963; seems to solve that problem.
sigma = 0.4;
w = exp(-0.5*( (n-N/2)/(sigma*N/2) ).^2);
% plotWindow(w, "Gaussian", "Gaussian", '\sigma = 0.4', "sigma = 0.4")
  plotWindow(w, "Gaussian", "Gaussian", "&#963; = 0.4", "sigma = 0.4")
 
%========================================================================
% Confined Gaussian
global T P abar target_stnorm
N = 512;                % Reduce N to avoid excessive computation time
n = 0:N;
L = length(n);          % Window length

target_stnorm = 0.1;
function [g,sigma_w,sigma_t] = CGWn(alpha, M)
  % determine eigenvectors of M(alpha)
  global L P T
  opts.maxit = 10000;
  if(M ~= L)
    [g,lambda] = eigs(P + alpha*T, M, 'sa', opts);
  else
    [g,lambda] = eig(P + alpha*T);
  end
  sigma_t = sqrt(diag((g'*T*g) / (g'*g)));
  sigma_w = sqrt(diag((g'*P*g) / (g'*g)));
end
function [h1] = helperCGW(anorm)
  global L abar target_stnorm
  [~,~,sigma_t] = CGWn(anorm*abar,1);
  h1 = sigma_t - target_stnorm * L;
end
% define alphabar, and matrices T and P
T = zeros(L,L);
P = zeros(L,L);
for m=1:L
  T(m,m) = (m - (L+1)/2)^2;
  for l=1:L
    if m ~= l
      P(m,l) = 2*(-1)^(m-l)/(m-l)^2;
    else
      P(m,l) = pi^2/3;
    end
  end
end
abar = (10/L)^4/4;
[anorm, aval] = fzero(@helperCGW, 0.1/target_stnorm);
[CGWg, CGWsigma_w, CGWsigma_t] = CGWn(anorm*abar,1);
sigma_t = CGWsigma_t/L          % Confirm sigma_t
w = CGWg * sign(mean(CGWg));
w = w'/max(w);
% \sigma_t works correctly in actual file, but not in thumbnail versions.
% plotWindow(w, "Confined Gaussian", "Confined Gaussian", '\sigma_t = 0.1', "sigma_t = 0.1");
  plotWindow(w, "Confined Gaussian", "Confined Gaussian", "&#963;&#8348; = 0.1", "sigma_t = 0.1");

  N = 2^16;          % restore original N
  n = 0:N;
  L = length(n);     % Window length

%========================================================================
global denominator;
sigma = 0.1;
denominator = (2*L*sigma).^2;
function [gaussout] = gauss(x)
  global N denominator
  gaussout = exp(- (x-N/2).^2 ./ denominator);
end
w = gauss(n) - gauss(-1/2).*(gauss(n+L) + gauss(n-L))./(gauss(-1/2 + L) + gauss(-1/2 - L));
% \sigma_t works correctly in actual file, but not in thumbnail versions
% plotWindow(w, "App. conf. Gaussian", "Approximate confined Gaussian", '\sigma_t = 0.1', "sigma_t = 0.1");
  plotWindow(w, "App. conf. Gaussian", "Approximate confined Gaussian", "&#963;&#8348; = 0.1", "sigma_t = 0.1");

%========================================================================
alpha = 0.5;
a = alpha*N/2;
w = ones(1,L);
m = 0 : a;
if( max(m) == a )
  m = m(1:end-1);
endif
M = length(m);
w(1:M) = 0.5*(1-cos(pi*m/a));
w(L:-1:L-M+1) = w(1:M);
% plotWindow(w, "Tukey", "Tukey", '\alpha = 0.5', "alpha = 0.5")
  plotWindow(w, "Tukey", "Tukey", "&#945; = 0.5", "alpha = 0.5")

%========================================================================
epsilon = 0.1;
a = N*epsilon;

w = ones(1,L);
m = 0 : a;
if( max(m) == a )
  m = m(1:end-1);
endif
% Divide by 0 is handled by Octave.  Results in w(1) = 0.
  z_exp = a./m - a./(a-m);
  M = length(m);
  w(1:M) = 1 ./ (exp(z_exp) + 1);
  w(L:-1:L-M+1) = w(1:M);

#{
% The original method is harder to understand:
t_cut = N/2 - a;
T_in = abs(n - N/2);
z_exp = (t_cut - N/2) ./ (T_in - t_cut)...
      + (t_cut - N/2) ./ (T_in - N/2);
% The numerator forces sigma = 0 at n = 0:
  sigma =  (T_in < N/2) ./ (exp(z_exp) + 1);        
% Either the 1st term or the 2nd term is 0, depending on n:
  w = 1 * (T_in <= t_cut)  +  sigma .* (T_in > t_cut);
#}

% plotWindow(w, "Planck-taper", "Planck-taper", '\epsilon = 0.1', "epsilon = 0.1")
  plotWindow(w, "Planck-taper", "Planck-taper", "&#949; = 0.1", "epsilon = 0.1")

%========================================================================
N = 2^12;               % Reduce N to avoid excess memory requirement
n = 0:N;
L = length(n);          % Window length

alpha = 2;
s = sin(alpha*2*pi/L*[1:N])./[1:N];
c0 = [alpha*2*pi/L,s];
A = toeplitz(c0);
[V,evals] = eigs(A, 1);
[emax,imax] = max(abs(diag(evals)));
w = abs(V(:,imax));
w = w.';
w = w / max(w);
% plotWindow(w, "DPSS", "DPSS", '\alpha = 2', "alpha = 2")
  plotWindow(w, "DPSS", "DPSS", "&#945; = 2", "alpha = 2")

%========================================================================
alpha = 3;
s = sin(alpha*2*pi/L*[1:N])./[1:N];
c0 = [alpha*2*pi/L,s];
A = toeplitz(c0);
[V,evals] = eigs(A, 1);
[emax,imax] = max(abs(diag(evals)));
w = abs(V(:,imax));
w = w.';
w = w / max(w);
% plotWindow(w, "DPSS", "DPSS", '\alpha = 3', "alpha = 3")
  plotWindow(w, "DPSS", "DPSS", "&#945; = 3", "alpha = 3")

N = 2^16;          % Restore original N
n = 0:N;
L = length(n);     % Window length
%========================================================================
alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*n/N -1).^2))/besseli(0,pi*alpha);
% plotWindow(w, "Kaiser", "Kaiser", '\alpha = 2', "alpha = 2")
  plotWindow(w, "Kaiser", "Kaiser", "&#945; = 2", "alpha = 2")
 
%========================================================================
alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*n/N -1).^2))/besseli(0,pi*alpha);
% plotWindow(w, "Kaiser", "Kaiser", '\alpha = 3', "alpha = 3")
  plotWindow(w, "Kaiser", "Kaiser", "&#945; = 3", "alpha = 3")
 
%========================================================================
alpha = 5; % Attenuation in 20 dB units
w = chebwin(L, alpha * 20).';
% plotWindow(w, "Dolph-Chebyshev", "Dolph-Chebyshev", '\alpha = 5', "alpha = 5")
  plotWindow(w, "Dolph&#8211;Chebyshev", "Dolph-Chebyshev", "&#945; = 5", "alpha = 5")
 
%========================================================================
w = ultrwin(L, -.5, 100, 'a')';
% \mu works correctly in actual file, but not in thumbnail versions
% plotWindow(w, "Ultraspherical", "Ultraspherical", '\mu = -0.5', "mu = -0.5")
  plotWindow(w, "Ultraspherical", "Ultraspherical", "&#956; = -0.5", "mu = -0.5")

%========================================================================
tau = (L/2);
w = exp(-abs(n-N/2)/tau);
% plotWindow(w, "Exponential", "Exponential", '\tau = N/2', "half window decay")
  plotWindow(w, "Exponential", "Exponential", "&#964; = N/2", "half window decay")
 
%========================================================================
tau = (L/2)/(60/8.69);
w = exp(-abs(n-N/2)/tau);
% plotWindow(w, "Exponential", "Exponential", '\tau = (N/2)/(60/8.69)', "60dB decay")
  plotWindow(w, "Exponential", "Exponential", "&#964; = (N/2)/(60/8.69)", "60dB decay")

%========================================================================
w = 0.62 -0.48*abs(n/N -0.5) -0.38*cos(2*pi*n/N);
plotWindow(w, "Bartlett-Hann", "Bartlett-Hann")

%========================================================================
alpha = 4.45;
epsilon = 0.1;
t_cut = N * (0.5 - epsilon);
t_in = n - N/2;
T_in = abs(t_in);
z_exp = ((t_cut - N/2) ./ (T_in - t_cut) + (t_cut - N/2) ./ (T_in - N/2));
sigma =  (T_in < N/2) ./ (exp(z_exp) + 1);
w = (1 * (T_in <= t_cut) + sigma .* (T_in > t_cut)) .* besseli(0, pi*alpha * sqrt(1 - (2 * t_in / N).^2)) / besseli(0, pi*alpha);
% plotWindow(w, "Planck-Bessel", "Planck-Bessel", '\epsilon = 0.1, \alpha = 4.45', "epsilon = 0.1, alpha = 4.45")
  plotWindow(w, "Planck&#8211;Bessel", "Planck-Bessel", "&#949; = 0.1, &#945; = 4.45", "epsilon = 0.1, alpha = 4.45")

%========================================================================
alpha = 2;
w = 0.5*(1 - cos(2*pi*n/N)).*exp( -alpha*abs(N-2*n)/N );
% plotWindow(w, "Hann-Poisson", "Hann-Poisson", '\alpha = 2', "alpha = 2")
  plotWindow(w, "Hann&#8211;Poisson", "Hann-Poisson", "&#945; = 2", "alpha = 2")
 
%========================================================================
w = sinc(2*n/N - 1);
plotWindow(w, "Lanczos")

%========================================================================
% optimized Nutall
ak = [-1.9501232504232442 1.7516390954528638 -0.9651321809782892 0.3629219021312954 -0.0943163918335154 ...
0.0140434805881681 0.0006383045745587 -0.0009075461792061 0.0002000671118688 -0.0000161042445001];

n = -N/2:N/2;
n = n/std(n);
w = 1;
for k = 1 : length(ak)
% This is an array addition, which expands the dimension of w[] as needed, and the value "1" is replicated.
   w = w + ak(k)*(n.^(2*k));
endfor
w = w/max(w);
plotWindow(w, "GAP optimized Nuttall")

The generated SVG files should be post-processed by a perl script (thanks to {{U|Olli Niemitalo}}), which scans the current directory for .svg files and makes the necessary changes if they have not already been made. The script (below) does the following:
  • change the SVG metadata title from "Gnuplot" to the body of the file name, and
  • replace UNICODE characters with actual Greek letters, and
  • replace Greek characters created by the Octave script with better-looking versions, and
  • move the title and axis labels farther away from the graph to prevent overlap.

Perl code

#!/usr/bin/perl

opendir (DIR, '.') or die $!;  ## open the current directory , if error exit
while ($file = readdir(DIR)) {  ## read all the file names in the current directory
  $ext = substr($file, length($file)-4);  ## get the last 4 letters of the file name
  if ($ext eq '.svg') {    ## if the file extension is '.svg'
    print("$file\n");    ## print file name
    ($pre, $name) = split(" - ", substr($file, 0, length($file)-4));  ## split the filename in 2
    @lines = ();  ## dummy up an array
    open (INPUTFILE, "<", $file) or die $!;  ## open up the file for reading
    while ($line = <INPUTFILE>) {  ## loop through all the lines in the file
      $line =~ s/&amp;/&/g;   ## replace "&amp;" with "&" , get rid of semicolon
      if ($line eq "<title>Gnuplot</title>\n") {  ## if line is EXACTLY equal to "<.....>\n" then
        $line = '<title>Window function and its Fourier transform &#8211; '.$name."</title>"."\n"; ## set the line to a new value, &#8211 - is unicode for a dash
                                                                                                   ## the .$name. concatenates the strings together
      }  ## end if
      @lines[0+@lines] = $line;  ## append to the output array the value of the modified line
    }  ## end loop
    close(INPUTFILE);   ## close the input file
    open (OUTPUTFILE, ">", $file) or die $!;   ## open the output file
    for ($t = 0; $t < @lines; $t++) {  ## loop through the output array, printing out each line
      print(OUTPUTFILE $lines[$t]);
    }  ## end loop
    close(OUTPUTFILE);   ## close the output file
  }  ## end if
}  ## end loop
closedir (DIR);  ## close the directory

Pealdised

Lisa üherealine seletus sellest, mida fail esitab

Selles failis kujutatud üksused

kujutab

media type inglise

image/svg+xml

Faili ajalugu

Klõpsa kuupäeva ja kellaaega, et näha sel ajahetkel kasutusel olnud failiversiooni.

Kuupäev/kellaaegPisipiltMõõtmedKasutajaKommentaar
viimane20. november 2019, kell 20:48Pisipilt versioonist seisuga 20. november 2019, kell 20:48512 × 256 (157 KB)Bob KDisplay parameter B on frequency distribution
6. aprill 2019, kell 01:54Pisipilt versioonist seisuga 6. aprill 2019, kell 01:54512 × 256 (156 KB)Bob KChange xticks label from N-1 to N, because of changes to article [Window function]
16. veebruar 2013, kell 23:27Pisipilt versioonist seisuga 16. veebruar 2013, kell 23:27512 × 256 (131 KB)Olli NiemitaloFrequency response --> Fourier transform
13. veebruar 2013, kell 12:18Pisipilt versioonist seisuga 13. veebruar 2013, kell 12:18512 × 256 (131 KB)Olli NiemitaloFont, dB range
13. veebruar 2013, kell 06:01Pisipilt versioonist seisuga 13. veebruar 2013, kell 06:01512 × 256 (131 KB)Olli NiemitaloUser created page with UploadWizard

Seda faili ei kasuta ükski lehekülg.

Globaalne failikasutus

Järgmised muud vikid kasutavad seda faili:

Metaandmed