Võrdtempereeritud häälestus

Allikas: Vikipeedia

Võrdtempereeritud häälestus on muusikas häälestus, mille pythagorase komma nivelleerimiseks jaotatakse oktaav kaheteistkümneks võrdseks osaks helikõrguste suhetega

Võrdtempereeritud häälestuses muusikainstrumendil ei leidu oktaavi piires ühtegi "ideaalset", st helisageduste täisarvulise suhtega puhast intervalli. Tänu harjumisele on võrdtempereeritud häälestus muutunud tänapäeva muusikapraktikas üldiselt aktsepteeritavaks.

Ajalugu[muuda | muuda lähteteksti]

Võrdtempereeritud häälestuse arvutas esimest korda välja Chu Tsai-yü Hiinas aastal 1584 üheksakohaliste arvude süsteemi abil. Euroopas said need arvutused tuntuks alles aastal 1799, kuid viiteta Chu Tsai-yü'le. Aastal 1588 pakkus Gioseffo Zarlino välja võrdtempereeritud häälestussüsteemi täpse geomeetrilise esituse. Simon Stevin kirjeldas esimese eurooplasena teoses "Vande Spiegheling der Singconst" (manuskript aastast 1600) arendatumat lahendust juurimise abil, arvates samas ekslikult, et puhtad suured tertsid säiluvad.

16. sajandi lauto võrdtempereeritud häälestamine tugines Vincenzo Galilei praktika põhjal pooltoonile suhtega 18:17 (umbes 99 tsenti).

17. sajandil diskuteerisid võrdtempereeritud häälestuse üle teoreetikud (Pietro Mengoli ja Marin Mersenne), heliloojad, muusikainstrumentide ehitajad ning haritud muusikud. Teada on näiteks 1600-ndate alguses toimunud Giovanni Artusi ja Claudio Monteverdi häälestussüsteemide-alane diskussioon. Girolamo Frescobaldi soovitas võrdtempereeritud häälestust Damaso Basilica S. Lorenzo oreli häälestamisel.

Saksa keeleruumis kasutas sõna võrdtempereeritud (täpsemalt küll sõna gleichstufig asemel gleichschwebend) Andreas Werckmeister aastal 1707 ilmunud teoses "Musikalische Paradoxal-Discourse": „ ... wenn die Temperatur also eingerichtet wird/daß alle Quinten 1/12 Commat: ... schweben, und ein accurates Ohr dieselbe auch zum Stande zu bringen und zu stimmen weiß/so dann gewiß eine wohltemperirte Harmonia, durch den gantzen Circul und durch alle Clavis sich finden wird.“ Werckmeister ei rõhuta seejuures, et võnkumise sagedussuhted oleksid võrdsed. Tema poolt kirjeldatud võrdtempereeritult häälestamise probleemi võivad näiteks klaverihäälestajad lahendada nii, et kasutavad klaveri häälestamisel erinevas registris erinevaid kvintide sagedussuhteid.

Kuni 18. sajandini oli võrdtempereeritud häälestuse tähtsus vähene. See kasvas aga jätkuvalt pooldajate arvu suurenedes, kelle hulka kuulusid näiteks Jean-Philippe Rameau ja Friedrich Wilhelm Marpurg. 18. sajandi lõpuks võitis võrdtemepereeritud häälestus lõplikult nö "hästi tempereeritud häälestuse" (Wohltemperierte Stimmung) ja pani end lõplikult maksma 19. sajandil.

Võrdtempereeritud häälestusega kaotas uues muusikas tähtsuse eelkõige helistiku karakter, kuna võrdtemepereeritud häälestuse korral kõlavad kõik helistikud sarnaselt. Vanamuusika teoste ettekandmisel võrdtempereeritult häälestatud instrumentidel lähevad seetõttu kaduma heliteose olulised kunstilised aspektid, näiteks vanamuusikaheliloojate poolt spetsiaalselt kasutatud halvasti kõlavad "võimatud" helistikud, mille eesmärk oli väljendada muusikas negatiivseid afekte nagu "valu" või "patt".

Tänapäeva muusikainstrumendid (klaver, kitarr) on reeglina häälestatud võrdtempereeritult. Paljud ajaloolised instrumendid (orel, tšembalo) häälestatakse aga historitsistlikel põhjustel võrdtempereerimata häälestussüsteemide põhjal.

Sageduste arvutamine[muuda | muuda lähteteksti]

Võrdtempereeritud häälestuse matemaatiline valem on järgmine:

,

kus f0 on näiteks kammertooni võnkesagedus a’ (440 Hz). i on pooltooni kaugus valitud toonist võnkesagedusega f0. Sellist matemaatilist jada nimetatakse geomeetriliseks jadaks.

Häälestamisel leitakse pooltooni kaugus kammertooni helist (i = - 2, allapoole liikudes) ja saadakse väärtused vastavalt võrrandile:

ning helile g’’ mis vastab pooltooni vahekaugusele f0, kui i = 10:

Nagu näha, vastab g’’ heli g’ kahekordsele võnkesagedusele; seejuures nendevaheline intervall kõlab konsonantselt ka kahe enharmoonilise heli puhul, mis on võrdtempereeritud häälestuse üks põhiomadusi. Võrdtemepereeritud häälestuse teine eelis on, et teost võib transponeerida (näiteks Fis-duurist C-duuri), ilma et kuulaja jaoks teose karakteris midagi muutuks (välja arvatud absoluutse kuulmisega isikud).

Võrdtempereeritud häälestuse väärtused tsentides[muuda | muuda lähteteksti]

heli C Cis/Des D Dis/Es E F Fis/Ges G Gis/As A Ais/B H C
tsent 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Järgnev tabel näitab kõigi intervallide väärtusi nii võrdtempereeritud kui ka puhtas häälestuses ja nende erinevust tsentides:

intervall võrdtempereeritud intervall puhas intervall erinevus (tsent)
priim 0 cent
väike sekund -11,73 cent
suur sekund -3,91 cent
väike terts -15,64 cent
suur terts 13,69 cent
kvart 1,96 cent
tritoon 9,78 cent
kvint -1,96 cent
väike sekst -13,69 cent
suur sekst 15,64 cent
väike septim 3,91 cent
suur septim 11,73 cent
oktaav 0 cent

Märkused:

  • Puhaste intervallide puhul on tritoon (suurendatud kvart) defineeritud: suur terts (5/4) pluss täistoon (9/8). Samuti kvint (3/2) miinus diatooniline pooltoon (16/15). Vaata ka puhas häälestus.
  • Kui erinevus on negatiivne, on võrdtempereeritud intervall kitsam kui puhas intervall.

Võrdtempereeritud häälestuses muusikaliste helide võnkesagedused hertsides (a1 = 440 Hz)[muuda | muuda lähteteksti]

Subkontraoktaav[muuda | muuda lähteteksti]

C2 = 16,353 ; Cis2 = 17,324 ; D2 = 18,354 ; Dis2 = 19,445 ; E2 = 20,602 ; F2 = 21,827 ; Fis2 = 23,125 ; G2 = 24,5 ; Gis2 = 25,975 ; A2 = 27.5 ; Ais2 = 29,135 ; H2 = 30,868

Kontraoktaav[muuda | muuda lähteteksti]

C1 = 32,703 ; Cis1 = 34,648 ; D1 = 36,708 ; Dis1 = 38,891 ; E1 = 41,203 ; F1 = 43,654 ; Fis1 = 46,249 ; G1 = 48,999 ; Gis1 = 51,913 ; A1 = 55,0 ; Ais1 = 58,270 ; H1 = 61,375

Suur oktaav[muuda | muuda lähteteksti]

C = 65,406 ; Cis = 69,296 ; D = 73,416 ; Dis = 77,782 ; E = 82,407 ; F = 87,307 ; Fis = 92,499 ; G = 97,999 ; Gis = 103,83 ; A = 110,0 ; Ais = 116,54 ; H = 123,47

Väike oktaav[muuda | muuda lähteteksti]

c = 130,81 ; cis = 138,59 ; d = 146,83 ; dis = 155,56 ; e = 164,81 ; f = 174,61 ; fis = 185,0 ; g = 196,0 ; gis = 207,65 ; a = 220,0 ; ais = 233,08 ; h = 246,94

Esimene oktaav[muuda | muuda lähteteksti]

c1 = 261,63 ; cis1 = 277,18 ; d1 = 293,66 ; dis1 = 311,13 ; e1 = 329,63 ; f1 = 349,23 ; fis1 = 369,99 ; g1 = 392,0 ; gis1 = 415,30 ; a1 = 440,0 ; ais1 = 466,16 ; h1 = 493,88

Teine oktaav[muuda | muuda lähteteksti]

c2 = 523,25 ; cis2 = 554,37 ; d2 = 587,33 ; dis2 = 622,25 ; e2 = 659,26 ; f2 = 698,46 ; fis2 = 739,99 ; g2 = 783,99 ; gis2 = 830,61 ; a2 = 880,0 ; ais2 = 932,33 ; h2 = 987,77

Kolmas oktaav[muuda | muuda lähteteksti]

c3 = 1046,5 ; cis3 = 1108,7 ; d3 = 1174,7 ; dis3 = 1244,5 ; e3 = 1318,5 ; f3 = 1396,9 ; fis3 = 1480,0 ; g3 = 1568,0 ; gis3 = 1661,2 ; a3 = 1760,0 ; ais3 = 1864,7 ; h3 = 1975,5

Neljas oktaav[muuda | muuda lähteteksti]

c4 = 2093,0 ; cis4 = 2217,5 ; d4 = 2349,3 ; dis4 = 2489,0 ; e4 = 2637,0 ; f4 = 2793,8 ; fis4 = 2960,0 ; g4 = 3136,0 ; gis4 = 3322,4 ; a4 = 3520,0 ; ais4 = 3729,3 ; h4 = 3951,1

Viies oktaav[muuda | muuda lähteteksti]

c5 = 4186,0 ; cis5 = 4434,9 ; d5 = 4698,6 ; dis5 = 4978,0 ; e5 = 5274,0 ; f5 = 5587,7 ; fis5 = 5919,9 ; g5 = 6271,9 ; gis5 = 6644,9 ; a5 = 7040,0 ; ais5 = 7458,6 ; h5 = 7902,1

Vaata ka[muuda | muuda lähteteksti]

Kirjandus[muuda | muuda lähteteksti]

  • Mark Lindley: Stimmung und Temperatur, in Frieder Zaminer (Hrsg.): Geschichte der Musiktheorie, Bd. 6. Hören Messen und Rechnen in der frühen Neuzeit, S. 109-332, Darmstadt 1987