Allikas: Vikipeedia
Mine navigeerimisribale Mine otsikasti

Praegusel definitsioonil on see viga, et imaginaarühikut ei saa defineerida arvu mõiste kaudu. Peale selle ei ole selle definitsiooniga imaginaarühik ka kompleksarvude seas üheselt määratud, sest ka (–i)2=–1. Näiteks kvaternioonide seas on sellise omadusega arve veel rohkem. Andres 31. mai 2006, kell 18.42 (UTC)

Imaginaarühikut tuleks defineerida kompleksarvu või imaginaararvu mõiste abil. Andres 31. mai 2006, kell 18.45 (UTC)

I don't speak your language, but hope you understand English. As far as I can see, your definition of the imaginary unit i is not correct. This should read: i is a special complex number with the property i2=-1. And definitely not as the (??) square root of -1! 1. september 2006, kell 10:53 (UTC)

Yes, the current definition is not correct.
On the other hand, your definition does not define the imaginary unit because it is not clear what is meant by 'special'. there are two complex numbersa with the property you cite. Besides, it depends on the definition of the complex number if the imaginary unit is defined from the concept of complex numbers or vice versa. Andres 2. september 2006, kell 00:35 (UTC)
Yes, both i and -i have this property, so what. But only one of them is i, the imaginary unit. There is no conflict in the definition. We can only define a+bi after having defined i, as a special complex number. In fact does it mean that we extend the real numbers with the new number i; we automatically get all the complex numbers. 3. september 2006, kell 15:48 (UTC)
How can we define i as a complex number when the complex number are being got from i?
I don't know what you mean by special. Andres 3. september 2006, kell 16:14 (UTC)

It is special, because it is introduced first as a complex number with the property i2=-1. Then the other complex numbers are derived from i as real linear combinations a+bi of 1 and i. 14. september 2006, kell 21:57 (UTC)