Thalese teoreem

Allikas: Vikipeedia
Thalese teoreem

Thalese teoreemi kohaselt on ringjoone diameetrile toetuv piirdenurk alati täisnurk[1].

Kui joonisel sirge AC on ringi diameeter, siis piirdenurk B on alati täisnurk.

Ajalugu[muuda | redigeeri lähteteksti]

Thalese teoreem on nime saanud Thalese järgi Mileetosest (umbes 625 – 547 eKr)[2]. Thalese teostest ei ole midagi säilinud. Vana-Kreekas oli kombeks avastused omistada eriti tarkadeks peetavatele meestele, hoolimata sellest, kes need avastused õigupoolest tegi. Eriti kehtib see pütagoorlaste kohta, kelle hulka Thales küll ei kuulunud: tema oli varasem mees. Thalesele omistavad selle teoreemi Proklos ja Diogenes Laertios, nende eeskujul ka kõik hilisemad allikad.

Thales polnud esimene, kes seda teoreemi teadis. Vana-Egiptuses ja Babüloonias tunti seda empiiriliselt, kuid pole teada, et nad oleksid suutnud seda tõestada. Thales väidetakse olevat esimene, kes selle teoreemi tõestas. Selleks kasutas ta oma varasemat avastust, et võrdhaarse kolmnurga alusnurgad on võrdsed, ja teadmist, et kolmnurga nurkade summa võrdub kahe täisnurgaga.

Pöördteoreem[muuda | redigeeri lähteteksti]

Tõene on ka Thalese teoreemi pöördteoreem: Täisnurkse kolmnurga hüpotenuus on ühtlasi selle kolmnurga ümberringjoone diameetriks.

Kui kombineerida Thalese teoreem ja tema pöördteoreem, siis saame järgmise tõese lause: Kolmnurga ümberringjoone keskpunkt asub ühel kolmnurga külgedest siis ja ainult siis, kui see kolmnurk on täisnurkne.

Viited[muuda | redigeeri lähteteksti]

  1. Endel Jürimäe, Kalle Velsker. "Matemaatika käsiraamat IX–XI klassile". Tallinn, "Valgus" 1987, lk. 213
  2. Endel Jürimäe, Kalle Velsker. "Matemaatika käsiraamat IX–XI klassile". Tallinn, "Valgus" 1987, lk. 160