Elektromagnetiline kiirgus

Allikas: Vikipeedia
Pildil on kujutatud lineaarselt polariseeritud elektromagnetilist kiirgust, mis levib vasakult paremale elektri- ja magnetväljade lainetusesarnase muutusena. Elektri- ja magnetväli on alati samas faasis ja sama amplituudide suhtega igas ruumipunktis ja ajahetkes.

Elektromagnetiline kiirgus (edaspidi EMK, kutsutakse ka elektromagnetlaineteks) on laetud osakeste kiiratav ja neelatav energia, mis kandub ruumis edasi lainena, milles elektri- ja magnetvälja komponendid võnguvad teineteise ja laine levimise suuna suhtes risti, olles üksteisega samas faasis. EM-laine levib vaakumis valguse kiirusel, milleks on c = 299 792 458 m/s (kuna meeter on defineeritud valguse kiiruse järgi, siis on see arv täpne).

Elektromagnetiline kiirgus on elektromagnetvälja erijuht. Kui elektrilaeng liigub, tekitab ta enda ümber elektromagnetvälja, aga kiirendusega liikuva laengu ümber tekib lisaks EMK, mis kannab allikast energiat eemale. Energiat mittekandev EM-väli on otseselt laengute tekitatud, EMK on aga tingitud muutuvatest elektri- ja magnetväljadest. Neid kahte nimetatakse vastavalt lähi- ja kaugväljaks, kuna Maxwelli võrranditest lähtuvalt langeb lähivälja intensiivsus kiiremini, jättes kaugemal domineerima kaugvälja (ehk elektromagnetilise kiirguse). Lisaks energiale omab EM-laine ka impulssi ja impulsimomenti, mis võivad vastastikmõjus ainega viimasele üle kanduda.

EM-kiirgust liigitatakse elektromagnetlaine sageduse järgi. Elektromagnetlainete spektri skaala alates väikseimast sagedusest (ehk suurimast lainepikkusest) on järgmine: raadiolained, mikrolained, infrapunakiirgus, nähtav valgus, ultraviolettkiirgus, röntgenkiirgus ja gammakiirgus.

Füüsika[muuda | redigeeri lähteteksti]

EMK omadused[muuda | redigeeri lähteteksti]

Elektromagnetlaine on elektri- ja magnetväljade häirituse levik ruumis, mistõttu ta ei vaja levimiseks keskkonda. Erinevalt EM-lainest on osadel lainetel, nagu heli- ja veepinna lained, aineline keskkond vajalik, kuna nende lainete korral ongi tegu keskkonna häirituse levimisega.

Elektri- ja magnetväljad alluvad superpositsiooniprintsiibile, mis tähendab, et kui kaks EM-lainet kohtuvad, siis summaarsesse lainesse annavad mõlemad oma panuse. Kuna EM-väli on vektorväli, siis täpsemalt öeldes kumbagi lainet iseloomustavad vektoriaalsed suurused (näiteks E) liituvad nagu vektorid.

EM-laine on ristlaine, järelikult saab teda iseloomustada polarisatsiooniga, mille suund on defineeritud elektrivälja vektori suunaga.

Elektromagnetiline kiirgus allub dualismiprintsiibile ehk sellel on nii laineline kui ka korpuskulaarne ehk osakeseline olemus. Tüüpiliselt on lainelised omadused hästi vaadeldavad madalate sageduste korral, kõrgema sagedusega lainetel aga ilmnevad korpuskulaarsed nähtused.

Lainemudel[muuda | redigeeri lähteteksti]

Lainemudeli järgi levib EMK lainena, kus elektrivälja muutus on tekitatud magnetvälja muutusest ja vastupidi. E-vektor on alati B-vektoriga risti ja samas faasis ehk kui üks neist on mingis punktis saavutanud maksimumi, siis on ka teisel seal maksimaalne väärtus, kusjuures elektri- ja magnetvälja tugevuste suhe püsib konstantne.

EM-laine sagedus ja lainepikkus on omavahel seotud järgneva valemi järgi:

\displaystyle v=f\lambda,

kus v on laine levimise kiirus (vaakumis on selleks konstant c, aines on väiksem), f sagedus ja \lambda lainepikkus.

Lainena on EMK-le omased nähtused nagu murdumine, dispersioon, interferents ja difraktsioon (mis on interferentsi erijuht).

Osakese mudel ja kvantteooria[muuda | redigeeri lähteteksti]

Osakese mudeli kohaselt toimub EMK kiirgamine ja neeldumine portsjonite ehk footonite kaupa. Footoni energia E ja talle vastava EM-laine sagedus f on seotud Plancki-Einsteini valemiga:

E = hf = \frac{hc}{\lambda} \,\!

kus h on Plancki konstant, \lambda on lainepikkus ja c on valguse kiirus.

Kvantteooria lisab korpuskulaarsele mudelile tingimuse, et aatomites on energiatasemed diskreetsete väärtustega ehk seega saab aatom elektronide üleminekul ühelt tasemelt teisele neelata ja kiirata ainult kindla sagedusega footoneid.

Osakese mudel koos kvantteooriaga seletab ära näiteks fotoefekti, musta keha kiirguse ja Comptoni efekti, mida lainemudel teha ei suuda.

Lainelisi ja korpuskulaarseid omadusi saab ka korraga vaadelda. Kui lasta topeltpilule langeda väga nõrk valgus ja teisele poole pilu paigutada ekraanina fotoelektronkordisti, saab jälgida üksikute footonite langemist ekraanile. Väikse arvu footonite korral langevad nad sinna pealtnäha juhusliku jaotuse järgi, aga kui neid on palju, siis on näha, et suurema tõenäosusega langevad nad piirkonda, kus laineteooria kohaselt peaks olema interferentsi maksimum. 1961. aastal teostas Claus Jönsson topeltpilu katse elektronidega, mis kinnitas, et ka aineosakestel on olemas lainelised omadused.[1]

Elektromagnetiline spekter[muuda | redigeeri lähteteksti]

Elektromagnetilist kiirgust saab jaotada sageduse järgi spektriks. Väiksematele sagedustele vastavad suuremad lainepikkused ja väiksemad kvandi energiad.

Raadiolained on madalaima sagedusega EM-lained, nende ülemiseks piiriks on ligikaudu 300 GHz. Inimesed rakendavad neid infoedastusvahendina, looduslikud raadiolainete allikad on mõned kosmilised objektid, näiteks pulsarid.

Mikrolained kuuluvad kõrgema sagedusega raadiolainete piirkonda (umbes 0,3–300 GHz). Lisaks infoedastusvahenditele kasutatakse mikrolaineid radarites, raadioteleskoopides, navigatsioonis (GPS) ja mikrolaineahjudes. Kosmiline taustkiirgus jääb mikrolainete piirkonda.

Infrapunakiirgus on EMK, mis langeb vahemikku 1–400 THz, piirnedes ühelt poolt punase valgusega (sellest ka nimi). Infrapunast kiirgust nimetatakse sageli soojuskiirguseks, kuna inimesele tuttavad “soojad” (ehk ligikaudu samas suurusjärgus temperatuuril kui inimese keha) objektid kiirgavad elektromagnetilist kiirgust, mille maksimum jääb inimsilmale nähtamatu infrapunase kiirguse vahemikku. Tehislikult rakendatakse seda kiirgust näiteks soojussensorites, infoedastuses (optiliste kiudude kaudu) ja öönägemisseadmetes.

Nähtavaks valguseks või lihtsalt valguseks nimetatakse EM-kiirgust, mis on inimsilmale nähtav. Selleks loetakse kiirgust vahemikus 400–790 THz, sagedamini aga väljendatakse valguse spektrit lainepikkuste skaalas, milleks on vastavalt 390–750 nm. Inimene saab suure osa informatsioonist nägemismeele kaudu ehk nähtava valguse abil. Looduslikeks allikateks on näiteks tähed (sh. Päike), leek ja bioluminestsents. Tehislikult on nähtav valgus kasutuses igal pool, kus on vaja midagi inimsilmale nähtavaks teha.

Ultraviolettkiirgus on EMK vahemikus 10–400 nm. Looduslikult pärineb inimese jaoks suur osa UV-kiirgusest Päikeselt, ehkki Maa atmosfäär laseb sellest läbi ainult väikse osa: UV-kiirgus lammutab hapniku ja osooni molekule ning neeldub selles protsessis. Kasutatakse luminofoorlampides, kus UV-kiirgus muudetakse nähtavaks valguseks, ja fluorestseerivate värvidega tehtud kujutiste kuvamiseks (näiteks turvaelementides). UV-kiirgust blokeeriva filtrina kasutatakse päikesekreemi; ka tavaline klaas on UV-kiirgusele suures osas läbipaistmatu.[2]

Röntgenkiirgus (0,01–10 nm) jõuab Maani kosmilistest allikatest, sealhulgas ka Päikesest, aga atmosfäär neelab selle ära. Kasutatakse näiteks meditsiinis ning lennujaamade ja riigipiiride turvakontrollides.

Gammakiirgus on kõige lühema lainepikkusega EMK (vähem kui 0,01 nm). Atmosfäär on selles lainepikkuste piirkonnas läbipaistmatu, aga looduses esinevatest ja tehislikest radioaktiivsetest isotoopidest eralduvale gammakiirgusele jääb inimene avatuks. Rakendust leiab näiteks meditsiiniliste vahendite desinfektsioonis ja vähiravis. Kosmoseteleskoopidega on võimalik kosmilist gammakiirgust vaadelda, kuna erinevalt maapealsetest teleskoopidest ei sega neid atmosfäär.

Bioloogilised efektid[muuda | redigeeri lähteteksti]

Inimese silm on vastuvõtlik nähtavale valgusele, lisaks võib ta tunda ka silmale nähtamatut kiirgust (näiteks infrapunast), kui see on piisavalt intensiivne, et põhjustada nahas neeldumisel soojusaistingu. Spektraalne vastuvõtlikkus erineb liigiti: näiteks mesilased on võimelised nägema UV-kiirgust.[3]

Fotosüntees toimub nähtava (mõnel liigil ka infrapunase[4]) valguse vahendusel, mis ergastab klorofülli molekule.

Elusorganismidele on kahjulik EMK ükskõik millises spektripiirkonnas, kui see on piisavalt intensiivne, et tekitada kuumakahjustust, aga suurema osa EMK energiast saadakse nähtava valguse ja infrapunakiirguse näol, kuna Wieni nihkeseadusest lähtuvalt asub Päikese kiirguse spektraalne maksimum just selles vahemikus, ja peale selle neelab Maa atmosfäär lühemad lainepikkused ära. Kõrgsageduslik EMK, mis ei pruugi olla eriti intensiivne, osutub kahjulikuks, kui footoni energia on piisav, et tekitada DNA-d kahjustavaid keemiliselt aktiivseid osakesi (pikalainelise UV-kiirguse korral), kahjustada DNA sidemeid otseselt (keskmine UV-kiirgus) või ioniseerida aatomeid (lühilaineline UV kuni gammakiirgus). UV kiirgus võib põhjustada näiteks päikesepõletust ja nahavähki.[5]

Lisaks eelpool mainitule saavad inimesele kaudsel moel kahjulikud olla ka päikesetormidest pärit suure intensiivsusega raadiolained, mis võivad tekitada rikkeid elektrivõrgus ja elektroonilistes seadmetes.

Viited[muuda | redigeeri lähteteksti]

Vaata ka[muuda | redigeeri lähteteksti]